Stoichiometry: study of mass and amounts in chemical reactions

What masses of H_2 and I_2 are required to make 10.0 g HI?

A mole ratio can be created with coefficients in balanced chemical equation

Mole ratios

$(1)H_2 + (1)I_2 \rightarrow 2HI$

In the balanced chemical equation on the previous page, how many moles H_2 are required to form 5.3 mol HI?

If 2.3 mol Cu react, how many mol AgNO₃ will react?

How many grams H_2 are required to form 10.0 g HI?

H₂ + I₂
$$\rightarrow$$
 2HI mole ratio only conversion
?gH₂ (0.0g HI that changes the chemical
formula,
molar mass moletHI formula,
mol ratio mol HI
from coeff.
10.0gHI x 21 mol HI x 1 mol H₂ x 2.016gH₂ =
127.908gHF x 2 mol HI x 1 mol H₂ =
Molar mass always per 1 mol $0.0788 g H_2$

Stoichiometry problems

$$2 C_8 H_{18} + 25 O_2 \rightarrow 16 CO_2 + 18 H_2 O_{(6 c+.)}$$

How many grams CO_2 are produced from combustion of 100. g octane (C_8H_{18})?

How many grams CO₂ are produced from combustion of 100. g propane, C₃H₈? $C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$

There is <u>no direct route</u> from mass to mass. (Use the mol ratio in the middle of a $g \rightarrow mol \rightarrow mol \rightarrow g$ calculation)

Only use the coefficients in the mol ratio, <u>not</u> in molar masses!

Limiting reactant

What if you're given masses of two reactants and are asked for product mass?

17.3 g P are reacted with 15.4 g O_2 . How many grams P_2O_5 can be produced?

This is a **limiting reactant** problem:

- One reactant is consumed before the other
- Once one reactant is consumed, the reaction stops
- The reactant that's consumed first is the limiting reactant