Lewis electron-dot structures: show valence electrons as dots



Ionic bonding: attraction between oppositely-charged ions

Molecules and covalent bonds

Molecule: atoms bonded in a group contain... Noumetals only

an H<sub>2</sub> molecule contains two H atoms **<u>covalently</u>** bonded:



- Noble gases have <u></u>8 valence electrons
- Stable main-group ions have <u>8</u> valence electrons
- Covalently bonded atoms have access to <u>§</u> valence electrons

**Octet rule**: atoms want to have <u>8</u> valence electrons to be stable

Lewis electron-dot structures of molecules

H C N O F  
# valence e:  
# covalent bonds: 
$$(I + 3 2 )$$
 outry applies  
duet rule J Coctet rule  $\Rightarrow$  8 ve  
H/He med 2 v.e.  
A proper Lewis structure for a molecule:  
• shows all valence electrons  
• covalent bonds = lines (each cov. bond has 2 e')  
• unshared electrons = dots  
• has full octets or duets  
• has the correct number of bonds on each atom  
ammunia  
NH<sub>3</sub>: total # valence e' in molecule:  $5 + 3(1) = 8$  ve  
+ to tal  
H - N - H tot # ve V  
oct/duets V  
H bonds V  
CH<sub>2</sub>O: total # valence e' in molecule:  
• CH<sub>2</sub>O: total # valence e' in molecule:  
• to tal  
H - N - H tot # ve V  
oct/duets V  
H bonds V  
CH<sub>2</sub>O: total # valence e' in molecule:  
• terp avshured electrons paired  
H - N - H tot # ve V  
oct/duets V  
H bonds V  
CH<sub>2</sub>O: total # valence e' in molecule:  
• terp avshured electrons paired  
H - N - H tot # ve V  
oct/duets V  
H - N - H tot # ve V  
oct/duets V  
H - N - H tot # ve V  
oct/duets V  
H - N - H tot # ve V  
oct/duets V  
H - N - H tot # ve V  
oct/duets V  
H - N - H tot # ve V  
oct/duets V  
H - N - H tot # ve V  
oct/duets V  
H - N - H tot # ve V  
oct/duets V  
H - N - H tot # ve V  
oct/duets V  
H - N - H tot # ve V  
oct/duets V  
H - N - H tot # ve V  
oct/duets V  
H - N - H tot # ve V  
oct/duets V  
H - N - H tot # ve V  
oct/duets V

Bonding overview

<u>lonic</u> Na<sup>+</sup> / Cl<sup>-</sup> e<sup>-</sup> transferred metal/nonmetal

from transfer of valence e<sup>-</sup>

both nonmetals

unequal sharing (nonpolar) <u>Covalent</u> CI-Cl e<sup>-</sup> shared equally Z nonmetals W equal electronegativities **<u>Electronegativity</u>**: tendency of an atom to claim more shared electron density



Fluorine is the most electronegative element:



Copyright © 2009 Pearson Prentice Hall, Inc.