
Chapter 12: Liquids, Solids, and Intermolecular Forces

<u>Phase</u>	<u>Shape</u>	Fluid or rigid?	Reason
(g)	indef	fluid	fast molecular motion
(1)	indef	fluid	motion
(s)	def	rigid	locked in place vibrating

Evaporation and condensation

Intermolecular forces: forces that attract one molecule to other molecules around it

If there were no intermolecular forces, what phase would all molecular substances be? $3^{a,5}$

In order to convert liquid to gas, the intermolecular forces that hold the molecules close to each other in the liquid must be overcome.

In a sample of room-temperature water, the molecules with the highest energy will move the fastest.

When a faster molecule finds the surface, it launches into the gas phase - this process is called: evaporation

 $H_2O(I) \rightarrow H_2O(g)$

7 feels cold, absorbs heat

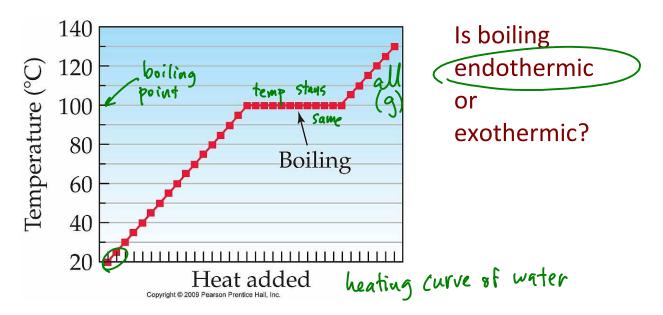
Evaporation is **<u>endothermic</u>** - heat energy is absorbed into the liquid in order to overcome the intermolecular forces so a molecule can break away from the rest.

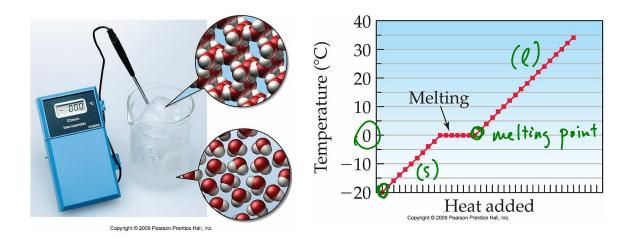
The opposite process, $H_2O(g) \rightarrow H_2O(I)$ is called: Condensation

It gives off heat because the gas molecules slow down - this is an <u>exothermic</u> process. feel hot -give off heat

Boiling and the heating curve

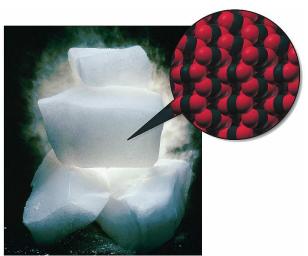
Heating a liquid makes its molecules move: faster


Eventually, they will all be moving fast enough to break free into the gas phase - even those in the interior of the liquid (not just at the surface like in evaporation). This process is called: boiling (is endothermic)

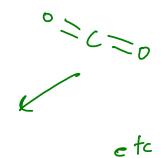

Heat added to a liquid can do one of two things:

- 1. Raise the temperature
- 2. Perform a phase change

...but only one at a time!!



Melting, freezing, sublimation


<u>Melting</u>: $H_2O(\varsigma) \rightarrow H_2O(\ell)$ <u>Freezing</u>: $H_2O(\ell) \rightarrow H_2O(\varsigma)$ <u>Sublimation</u>: $H_2O(\varsigma) \rightarrow H_2O(g)$

endothermic *or* exothermic? endothermic *or* exothermic? endothermic *or* exothermic?

Copyright © 2009 Pearson Prentice Hall, Inc

CO2(s) dry ice

(Oz (g) sublimation

Dispersion force

There are 3 types of intermolecular forces:

- 1. Dispersion force
- 2. Dipole-dipole force
- 3. Hydrogen bonding

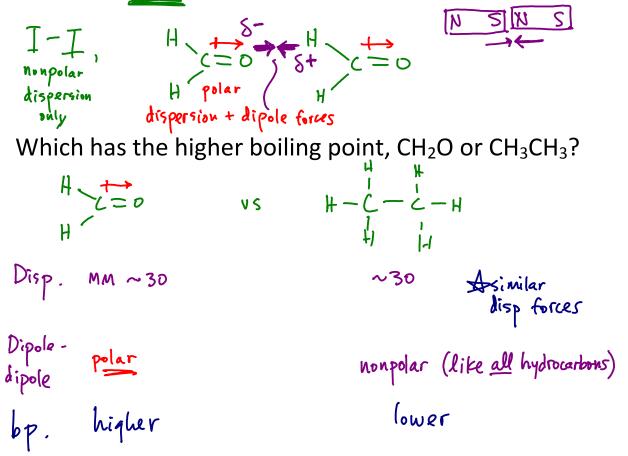
Dispersion force: (sometimes called London force) present between *all molecules*.

Strength of dispersion forces and boiling point

You can estimate the strength of a molecule's dispersion force by calculating its **molar mass**.

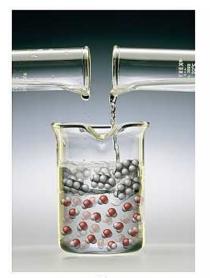
	MM	Strength of dispersion forces
l ₂	~ 254	strongest
Br ₂	~160	
Cl ₂	~70	Weakest

<u>Boiling point</u>: temp where (ℓ) becomes (९)


If a substance has relatively <u>strong</u> intermolecular forces, it will have a relatively <u>high</u> boiling point

Which has the <u>highest</u> boiling point, 12, Br2, or Cl2? Strongest disp. forces (largest MM)

Which has the lowest boiling point, I₂, Br₂, or Cl₂?

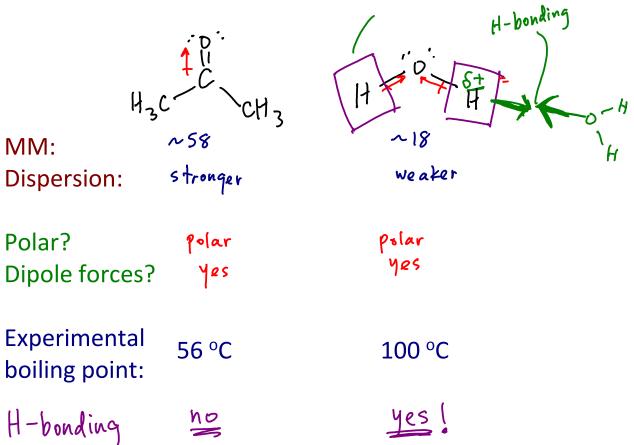

Dipole-dipole force

Dipole-dipole forces are attractions between opposite dipoles of polar molecules.

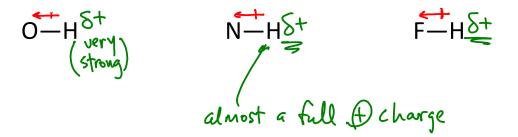
Polarity determines **miscibility** - whether or not two liquids will mix.

Only substances with similar polarities will mix.

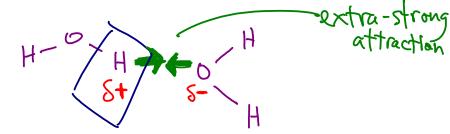
(a)



Copyright © 2009 Pearson Prentice Hall, Inc.


(c)

Hydrogen bonding

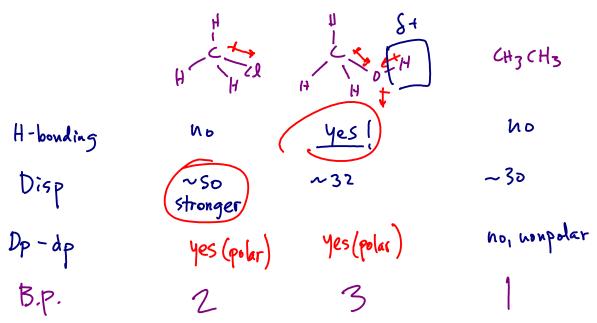

Consider acetone and water:

One of these molecules has <u>hydrogen bonding</u>, an extrastrong dipole force resulting from an **electropositive H**:

Hydrogen bonding is much stronger than dispersion forces and regular dipole-dipole forces.

Boiling point practice

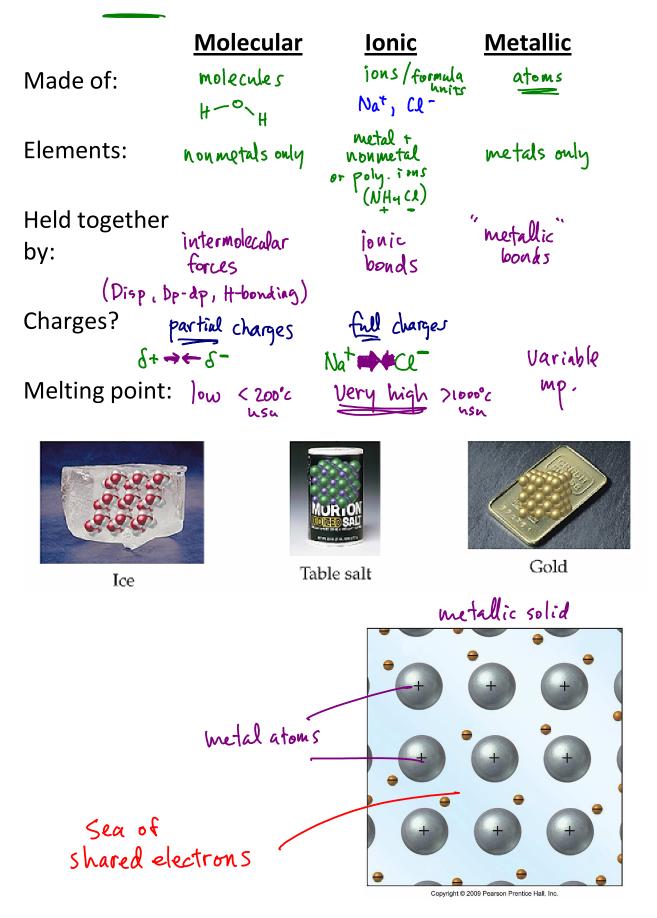
To rank compounds in order of boiling point:


- 1. Find compounds with H-bonding they will have higher bp's than compounds without H-bonding
- 2. Use molar mass to determine dispersion forces (a difference of less than 10 is not significant)
- 3. Use polarity to determine dipole-dipole forces

The compound with the strongest intermolecular forces will have the <u>highest</u> boiling point!

Which has a higher boiling point, dimethyl ether (CH₃OCH₃) or ethanol (CH₃CH₂OH)?

Rank these in order of increasing boiling point, with 1 as the lowest and 3 as the highest: CH₃Cl, CH₃OH, CH₃CH₃



Rank these in order of increasing boiling point, with 1 as the lowest and 4 as the highest: CH₂F₂, CH₃OH, CH₃CH₂OH, N₂.

		H H H H H	CH3CH2-01	:N=N:
H-bonding	no 3	H [1 yes]	<u>yes!</u>	ho

Disp ~52 ~32 ~46 ~28

Types of solids

