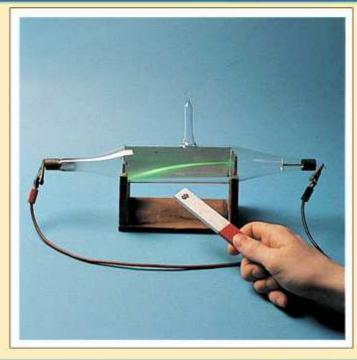

Laws: constant composition and conservation of matter (1700s) Compounds have fixed ratio of elements

Dalton's atomic theory: (early 1800s)

- Matter is made of indestructible atoms
- Atoms of one element are the same
- Atoms combine in simple ratios to make compounds

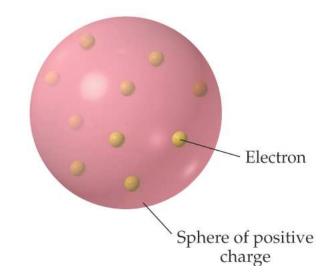

Discovery of the electron: (J. J. Thomson, late 1800s)

Cathode ray tube (beam of <u>electrons</u>)

High voltage

Figure 2.5: The Beam of Negative Particles Bends Downward

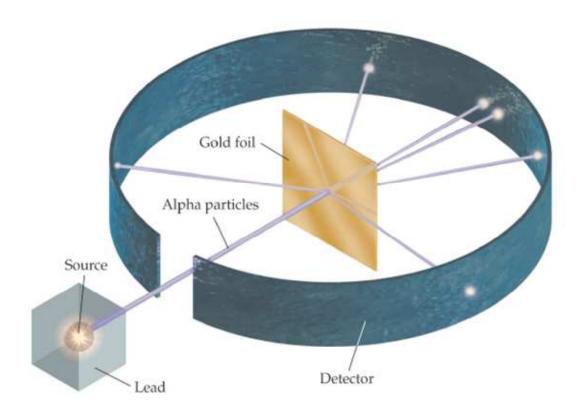
Source: Photo by James Scherer. Houghton Mifflin Company. All rights reserved.


Copyright © Houghton Mifflin Company. All rights reserved

Presentation of Line Art / Illustrations, 2a-10

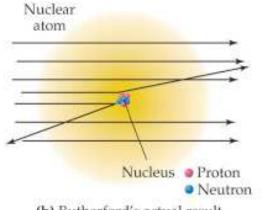
Electrons are:

- the same no matter which substance they come from.
- particles that are <u>smaller</u> than atoms.
- negatively charged.


Plum pudding model

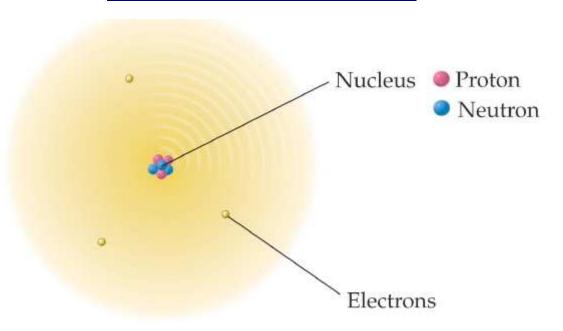
Discovery of the nucleus

Rutherford

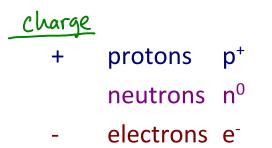

Gold foil experiment: to test plum pudding model

Expected: alpha particles to fly straight through foil

Actually: most went straight through, but some were strongly deflected.

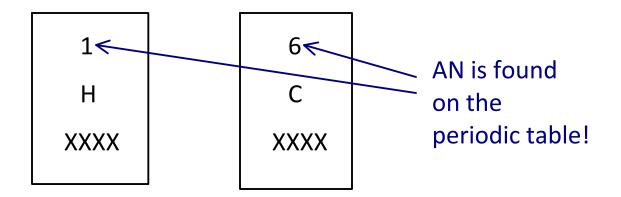


Conclusions:


- Atoms are mostly empty space
- Atoms must contain a dense positively-charged core that is small but massive

Nucleus: Rutherford's name for the (+)-charged core of the atom

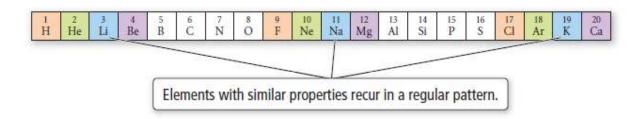
Modern model of the atom:


3 subatomic particles:

Elements

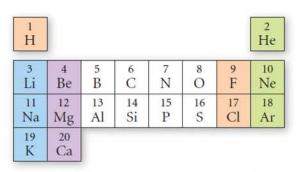
The number of <u>protons</u> determines which element an atom is.

Atomic number (AN) = # p⁺ in nucleus


Hydrogen has ____ protons in its nucleus.

Carbon has <u>6</u> protons in its nucleus.

Dimitri Mendeleev discovered that elements with similar properties are found every <u>8 elements</u> when put in order of atomic number.


He, Ne, and Ar are all unreactive gases (atomic numbers 2, 10, and 18)

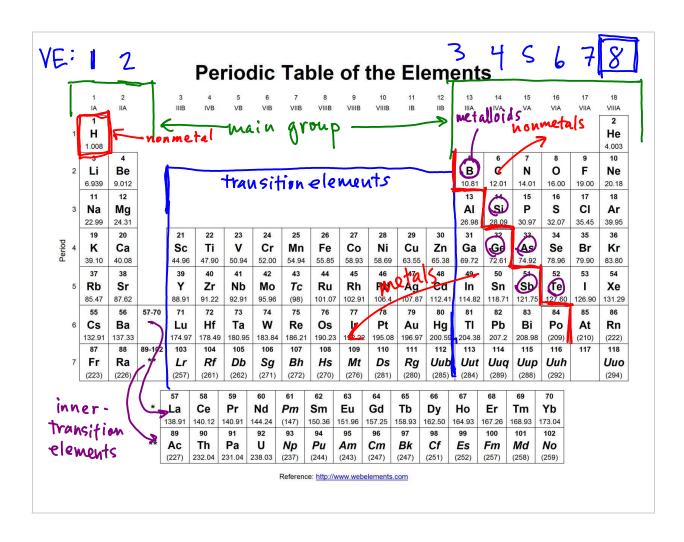
A Simple Periodic Table

Periodic table:

- Columns = groups or families (18 groups)
- \circ Rows = periods (7)

Elements with similar properties fall into columns.

Sections of periodic table


"A" in roman num. group #'s Main group Transition elements ('B" Inner transition elements below rest of table

conductors (electricity/heat) all(s) malleable, ductile except Hg(e) **Metals:**

Nonmetals: insulators, dull, brittle

Metalloids: combination of properties

Si & Ge are semiconductors

Some important groups

IA: alkali metals Li, Na, K,

all reactive w/ HzO

IIA: alkaline earth metals

burn w/ bright white flame

VIIA: halogens

Fz 3 Cl2 (g)

F-F

B12 (1)

I2 (5)

VIIIA: noble gases un reactive (inert)

<u>Ions</u>: charged atoms or molecules

Stable ions have the same # electrons as the...

nearest noble gas

Valence electrons: outermost electrons

for responsible for reactivity

main-grp = group # (roman num)

Main-group metals: lose their valence electrons

Metallic elements are... nentral }
usually unstable (reactive)
Metals in compounds are... + stable ions

Charge: group #-8

Mass number

Atomic
$$# = # protons$$

Mass $# = #p^{+} + #n^{\circ}$

carbon-12: $#p^{+} = 6$

MN $#n^{\circ} = 6$

[2 = MN

carbon-13 $#p^{+} = 6$
 $#n^{\circ} = 7$

Isotopes: versions of an atom with the... Same #pt different the

13 MN

same AN different MN

3 naturally-occurring isotopes of carbon:

<u>Isotope name</u>	<u>AN</u>	MN	#p+	<u>#nº</u>	<u>#e</u> -	lsotope Symbol
carbon-12	6	12	۵	6	6	12 C
carbon-13	6	13	6	7	6	13 C
carbon-14	Ь	14	6	8	6	14 C
isotope sy	atton in MC mbol:	M A	N	7	-sy wl	

Isotopes

An atom has 11 protons and 12 neutrons

AN = 11
MN = 23 =
$$\#p + \#n$$

isotope name = $Sodium - 23$
isotope symbol = ^{23}Na
#e⁻ if neutral = 11
#e⁻ if stable ion = 10 (Na^{+})

<u>Atom</u>	<u>MN</u>	atomic mass
carbon-12	12	exactly 12 amu
carbon-13	13	13.00335 amu
magnesium-24	24	23.98504 amu

Atomic mass

A sample of natural carbon contains...

98.9% carbon-12

1.1% carbon-13

trace carbon-14

Atomic mass of "natural carbon":

On periodic table:

6

C

12.01

Mass number is NOT on the periodic table!