Announcements

Monday, April 06, 2009

Exam 1 average ~72%. Key will be posted soon.

Discussion assignment 2 is now available. Reserve your topic before class next week (Monday, April 13).

Lecture 8 post and lecture 9 pre assignments due next Monday, April 13. A gas lamp is a sealed glass tube that contains a gas sample, and glows when a high voltage is applied to it.

Hg(g)

 $H_2(g)$

But <u>only certain</u> <u>wavelengths</u> of

light are given off by a gas lamp.

Compare with the continuous spectrum given off by a white light source like a light bulb.

Copyright © 2009 Pearson Prentice Hall, Inc.

Bohr model

<u>Why</u> are only <u>certain</u> colors of light given off by a pure gas sample?

The **Bohr model** can help explain why:

- Electrons orbit in specific fixed distances from nucleus, called <u>shells</u>
- Electrons jump to higher, more distant orbits when they absorb energy (excitation)
- They drop down to lower orbits when they give off energy, usually as <u>light</u> (relaxation)

Quantum-mechanical model

Shortcomings of the Bohr model:

- Can predict the energies of electrons in a hydrogen atom, but not for any other element
- Assumes electrons travel in single circular paths, not likely
- Does not explain periodic table behavior

Quantum mechanical model:

- Assumes electrons can act like particles <u>or</u> waves (supported by experimental evidence)
- Exact position or path of a single electron are impossible to predict
- But, you can predict the probability of finding an electron within a certain space:

Orbital: 3-dimensional shape that defines the **probability** of finding an electron

Shells, subshells, and orbitals

The quantum mechanical model has <u>shells</u> like the Bohr model

- *n* = 1, 2, 3, 4, ... (principal quantum number)
- As *n* increases, energy of the electron increases, and **average** distance from the nucleus increases.

But shells alone cannot explain electron behavior. Each new row on the periodic table is a new shell, and the major sections (main group, transition, etc) each have their own **subshell**.

Each shell has *n* subshells:

<u>Shell</u>	<u># subshells</u>	Subshell letters
<i>n</i> = 1	1	1s
<i>n</i> = 2	2	2s, 2p
<i>n</i> = 3	3	3s, 3p, 3d
<i>n</i> = 4	4	4s, 4p, 4d, 4f

Electron configurations

 Period
 H
 He

 1
 (1e⁻)

 (2e⁻)

 Period
 Li
 Be

 B
 C
 N
 O
 F
 Ne

 2
 (3e⁻)
 (4e⁻)

 (5e⁻)
 (6e⁻)
 (7e⁻)
 (8e⁻)
 (9e⁻)
 (10e⁻)

If the elements in period 1 have their electrons in the 1s subshell,

the s subshell can hold a maximum of 2 electrons.

Electron configuration: subshell# e-

H: 1s¹ **He**: 1s²

Actually, <u>every s subshell</u> can hold a max of $\frac{2}{}$ electrons (including 2s, 3s, 4s, 5s, etc)

In period 2, we fill the 2nd shell (2s and 2p subshells)

Li: $|s^2 2s|$ **Be**: $|s^2 2s^2$

When we cross to a new section on the periodic table, a new subshell is being filled. B-Ne fill into the $\frac{2p}{p}$ subshell

B:
$$|s^{2}2s^{2}2p'|$$
 C: N:
O: $|s^{2}2s^{2}2p''$ F: Ne: $|s^{2}2s^{2}2p''$

Electron configurations and the rest of the periodic table

Available subshells to fill:

1s			
2 s	2p Ist available	<u>Subshell</u>	<u>Max # e⁻</u>
3 s	3p(3d)	s	2
4 s	$4p \overline{4d}(4f) \leftarrow kf$	J	<u> </u>
5 s	5p 5d 5f available f	р	6
6 s	6p 6d	d	10
7s	7p	f	14

Na: Ca: $1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 4s^{2}$ Sc: $1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 4s^{2} 3d^{1}$ Ba:

Filling order (to check work only!)

W: $6s^2 4f^{14} 5d^4$

Abbreviated electron configurations, valence electrons

Noble gases all have <u>full subshells</u>

Abbreviated electron configuration starts with the nearest smaller noble gas in brackets, then continues $V: [Xe] = 624f^{14}5d^{4}$ n=6: valence shell $V: [Xe] = 725f^{14}6d^{10}7p^{4}$ n=7: valence shell $Vuh: [Pn] = 75f^{14}6d^{10}7p^{4}$ n=7: valence shell

<u>Valence electrons</u>: electrons in the outermost <u>shell</u> (not subshell)

> 4s subshell is in the n = 4 shell 5p subshell is in the n = 5 shell

The largest *n* number in an electron configuration is the **valence shell**.

Bi:

Br:

Orbital diagrams

<u>Subshell</u>	<u>Max # e⁻</u>	<u># Orbitals</u>
S	2	1
р	6	3
d	0	5
f	14	7

Recall, an orbital is a ... Volume inside of which an e - is likely to be found

If an s subshell contains a single orbital, how many orbitals are in a p subshell?

