
<u>VSEPR Theory</u>: Valence shell electron pair repulsion

- Electron groups repel one another through coulombic forces
- They will spread as far apart as possible on a molecule's central atom
- <u>1 electron group:</u>
 - 1 single bond
 - 1 double bond
 - 1 triple bond
 - 1 lone (unshared) pair of electrons

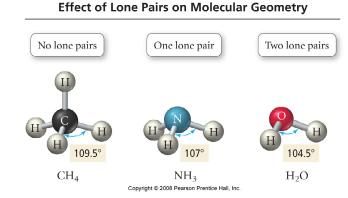
The five major electron group geometries:

<u># e⁻ groups</u>	<u>Geometry</u>	<u>Structure</u>	Ideal bond angle
2	Linear		
3	Trigonal planar		
4	Tetrahedral		
5	Trigonal bipyramidal		
6	Octahedral		

Electron group geometries

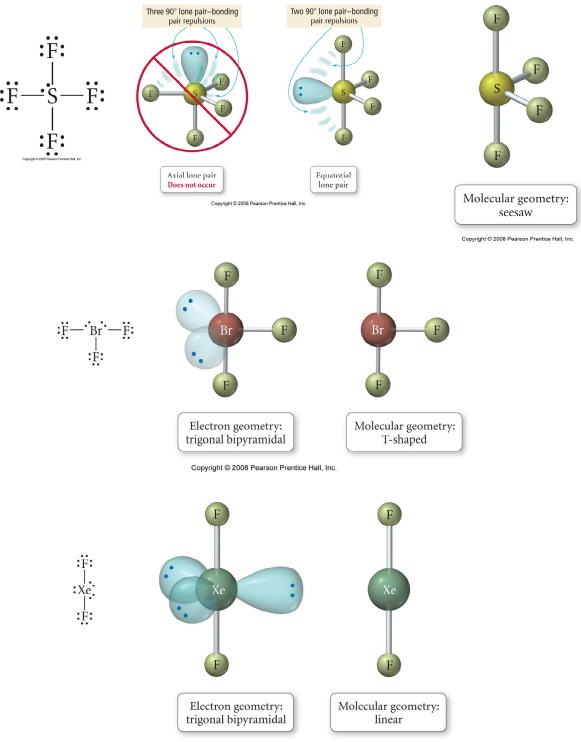
Lone pairs and molecular geometry

Electron group geometry is the arrangement of the electron groups

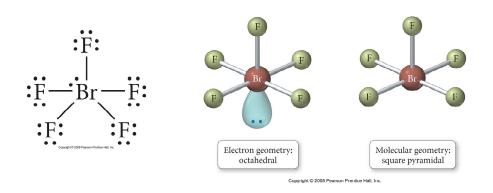

Molecular geometry is the arrangement of the atoms

These are the same if only **bonding** electron groups are attached to the central atom.

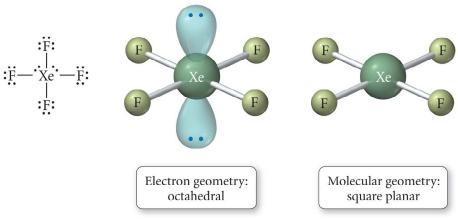
Nonbonding electrons (lone pairs) on the central atom will change the **molecular geometry**.


	_	e ⁻ group geom.	<u>structure</u>
CH4			
NH_3			
H ₂ O			

Lone pairs will actually repel the bonds a little more than a bond would, decreasing bond angles slightly.


5 electron groups with lone pairs

Lone pairs will **only** be placed in equatorial positions in the trigonal bipyramidal electron group geometry.



Copyright © 2008 Pearson Prentice Hall, Inc.

6 electron groups with lone pairs

Two lone pairs in an octahedral electron group geometry will add across from each other to minimize lone pairlone par repulsions.

Copyright © 2008 Pearson Prentice Hall, Inc.

Electron groups	Bonding groups	Nonbonding groups	Molecule shape	Example	Drawing
2	2	0	Linear	BeF ₂	F—Be—F
3	3	0	Trigonal planar	BF ₃	F F ^{_B} _F
	2	1	Bent	SO_2	∷ ₀≈≈⊳₀
	4	0	Tetrahedral	CH4	H-COL
4	3	1	Trigonal pyramid	NH3	
	2	2	Bent	H ₂ O	н_о
5	5	0	Trigonal bipyramid	PCl5	0-0-0 0-0-0
	4	1	Seesaw	SF_4	:s
	3	2	T-shaped	ClF3	н- <u>а</u> -н
	2	3	Linear	XeF_2	-Xe
	6	0	Octahedral	SF_6	F F F F
6	5	1	Square pyramid	IF ₅	
	4	2	Square planar	XeF4	F_Xe_F

Geometry practice

What is the electron group and molecular geometry of IBr₅? Draw its flat Lewis structure and its 3-dimensional structure.

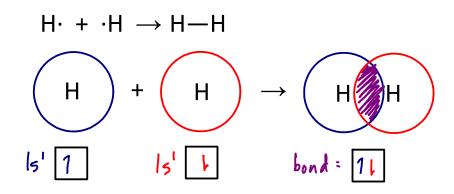
What is the electron group and molecular geometry of ICl₂-? Draw its flat Lewis structure and its 3-dimensional structure.

Molecular shape and polarity

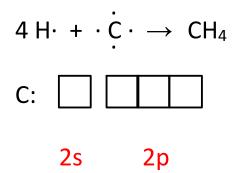
The dipoles of polar bonds will add together geometrically to form a <u>net dipole moment</u> for the molecule. Molecules with a net dipole moment are <u>polar</u>.

 H_2O :

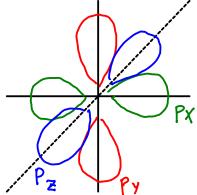
CO₂:


BF₃:

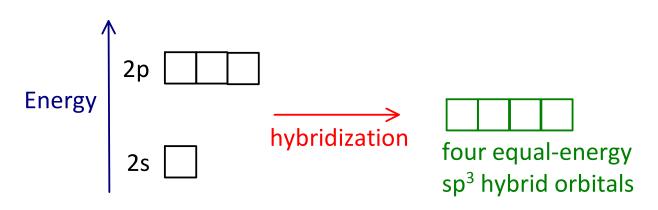
 CH_2F_2 :

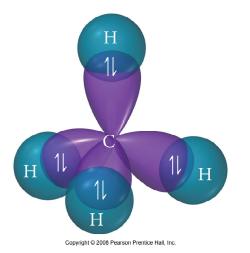

CO₃²⁻:

Valence bond theory


In valence bond theory, bonds are formed by the orbitals of two atoms overlapping.

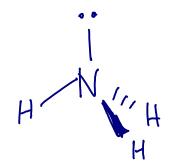
But, many times the orbitals cannot combine as-is.

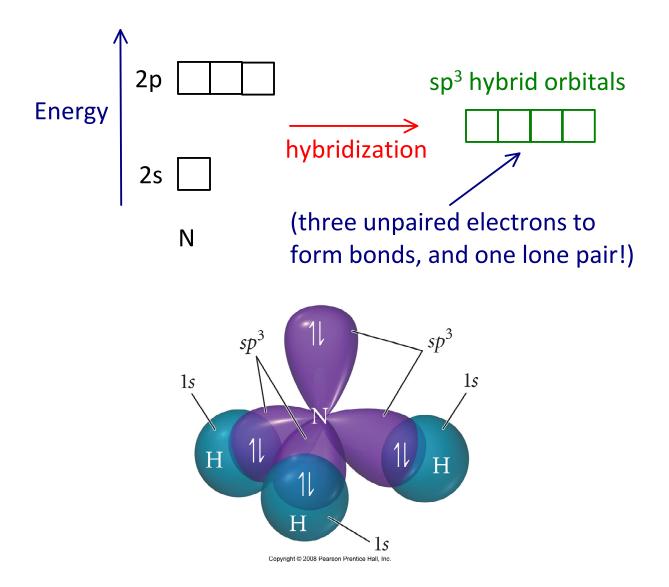

Remember, p orbitals are oriented on the x, y, and z axes:


Using VSPER, what is the shape of the CH₄ molecule?

sp³ hybrid orbitals

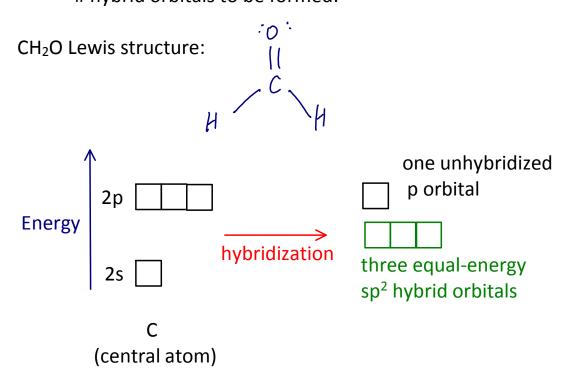
The one s and three p orbitals in carbon's valence shell combine together into 4 equivalent **hybrid orbitals** so carbon can make 4 bonds.


According to VSEPR, four equivalent hybrid orbitals (each containing one electron group) will best fit around a central atom with a ______ geometry.

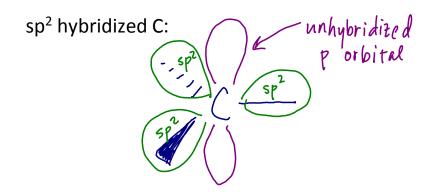

Any time there's a ______ electron group geometry, the hybridization of the central atom is _____.

sp³ hybrid orbitals

NH₃: electron group geometry:molecular geometry:# electron groups on central atom:

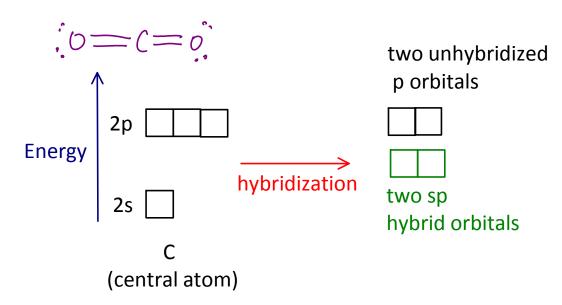


(The number of electron groups on the central atom is the number of hybrid orbitals that need to be formed!)



sp² hybrid orbitals

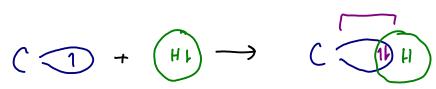
CH₂O: # electron groups on central atom: # hybrid orbitals to be formed:



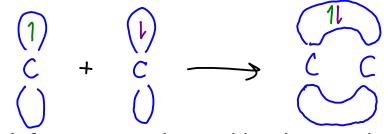
The three sp² hybrid orbitals will be ______ in shape. The unhybridized p orbital is perpendicular.

sp hybridization

CO₂: 2 electron groups around C, so 2 hybrid orbitals

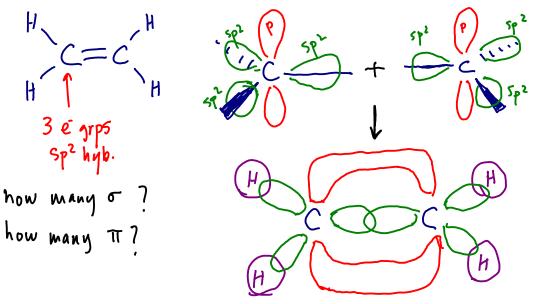

An sp hybridized central atom will be _____ in shape.

sp hybridized C:

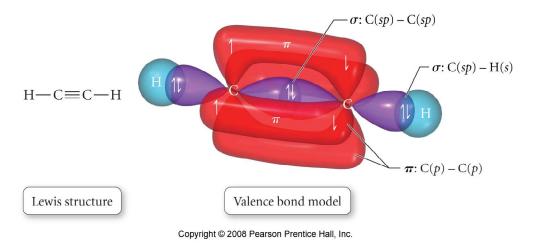

sp sp

 σ and π bonds

The bonds in valence bond theory are classified by their positions relative to the two bonding atoms. If two half-filled orbitals combine straight between the two atoms, it's called a σ (sigma) bond.



When two half-filled p orbitals combine side-by-side, it's called a π (pi) bond.



A <u>single bond</u> from Lewis theory like the C–H bonds in CH_4 is made of a single σ (sigma) bond.

A <u>double bond</u> from Lewis theory like the C=C bond in C_2H_4 is formed by one σ bond and one π bond.

If an atom is sp hybridized, it has 2 hybrid orbitals and 2 unhybridized p orbitals.

Summary of σ and π bonding:

Bond type:	Lewis:	Valence bond theory:
Single		σ, π
Double	—	σ, π
Triple	\equiv	σ,π

Summary of hybrid orbitals

<u>hybridization</u>	<u>unhybridized</u> <u>p orbitals</u>
	<u>hybridization</u>