Chapter 2: Atoms and elements

A few important laws... (what is a scientific law?)

Law of conservation of mass: in a chemical reaction, matter is neither

Antoine Lavoisier, 1743-1794 (France)

Law of definite proportions: any sample of a <u>compound</u> will have the same proportions of elements

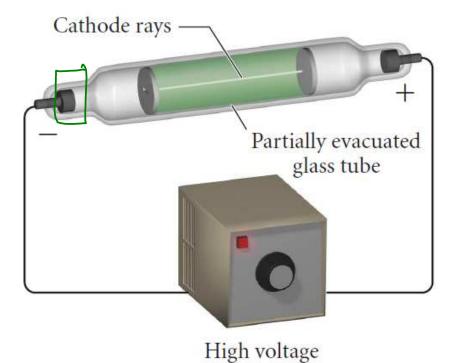
Two different samples of CO<sub>2</sub>:

Sample 1: 25.6 g O; 9.6 g C

Sample 2: 21.6 g O; 8.10 g C

Law of multiple proportions: Different compounds of the same elements have whole number proportions of elements.

Water and hydrogen peroxide: both have H and O


Water: 0.136 g H for every 1 g O Hydrogen peroxide: 0.0630 g H for every 1 g O

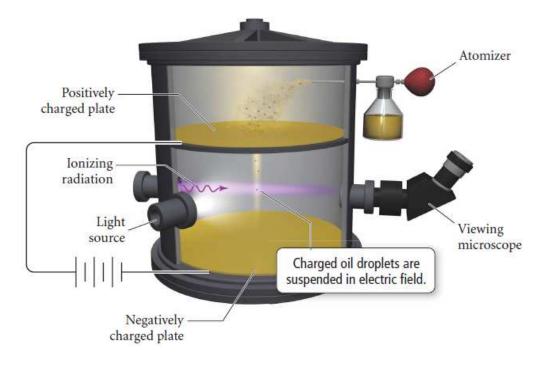
## Atomic theory: John Dalton, 1808

- Atoms = indestructible, smallest unit of element to retain identity
- 2. An element has all the same type of atoms
- 3. A compound contains atoms of 2 or more elements in a fixed ratio
- 4. In a chemical reaction, atoms rearrange to form new substances

#### Discovery of the electron

J. J. Thomson, 1897: cathode ray tube

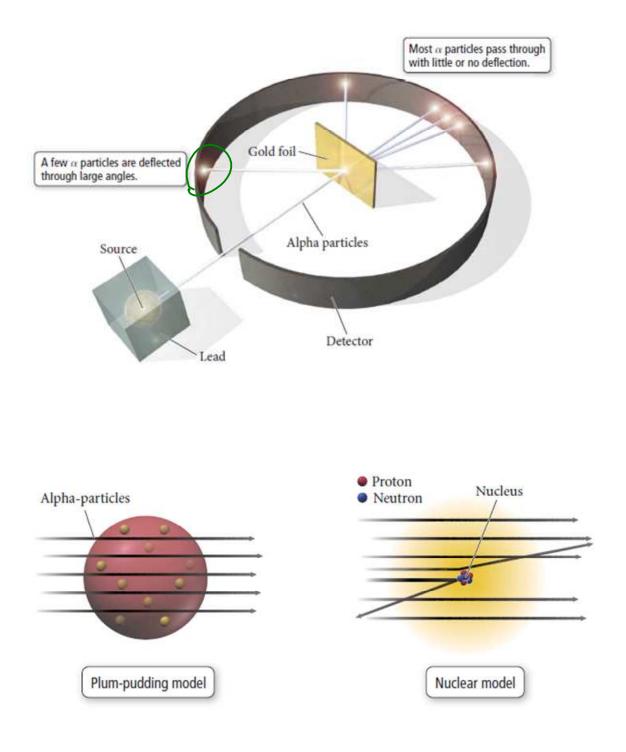



Cathode rays contain a single type of particle:

- Negatively charged
- The same from any element
- Calculated mass/charge ratio

Thomson called it the <u>electron</u>.

#### Oil drop experiment


## Robert Millikan: 1909 Oil drop experiment



# Charge of an electron: $1.602 \times 10^{-19}$ coulombs (C) Mass of an electron: $9.109 \times 10^{-28}$ g

### Gold foil experiment

## Ernest Rutherford: 1911 gold foil experiment



Nuclear model

Rutherford's nuclear model:

- 1. Most of atom's mass is in a tiny dense nucleus
- 2. Most of the volume is empty space, with tiny electrons around the nucleus
- 3. In a neutral atom, the number of protons equals the number of

Elements and isotopes

Atomic number (Z):

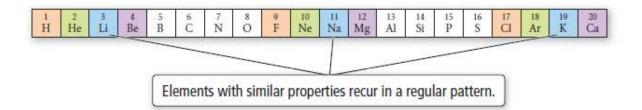
# Mass number (A):

A certain nucleus contains 11 protons and 12 neutrons. Z = A =

<u>Nuclide</u>: a nucleus with a certain atomic and mass number (a given number of protons and neutrons)

**Isotopes**: have same atomic number, different mass #'s (same number of \_\_\_\_\_, different number of \_\_\_\_)

## Nuclide symbol:


Isotope name:

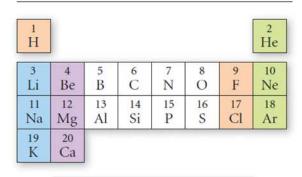
Periodic table

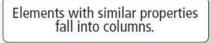
Dimitiri Mendeleev, 1869 Originally arranged elements in order of atomic weight (now use atomic # to order)



Periodic law: elements with similar properties recur in a regular pattern




## Periodic table:


- Columns = groups or families (18 groups)
- Rows = periods (7)

# Group numbers: roman numeral then A/B

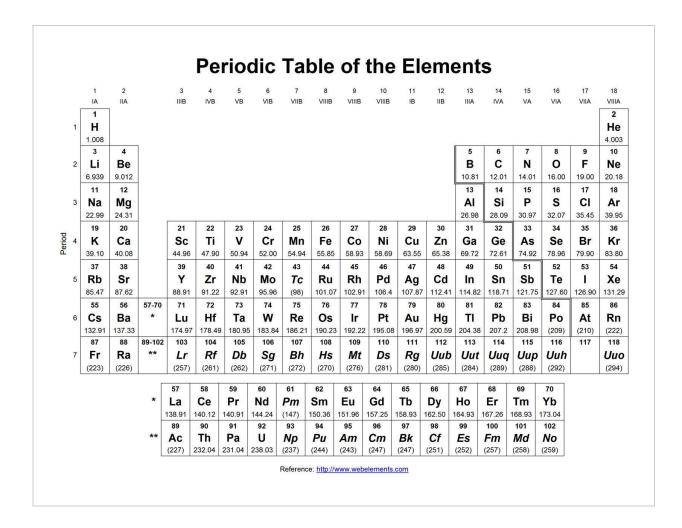
- A: main-group
- B: transition

A Simple Periodic Table





Parts of the periodic table


## Some important groups:

- IA: alkali metals
- IIA: alkaline earth metals
- VIIA: halogens
- VIIA: noble gases

# Metals:

## Nonmetals:

# Metalloids (semimetals):

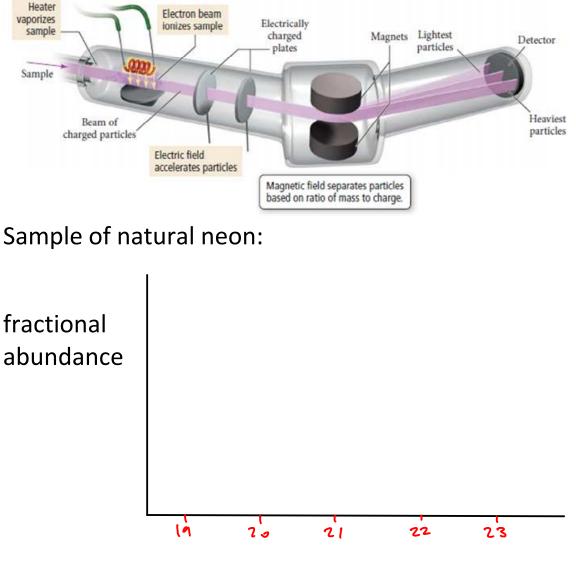


Neutral atoms have the same number of protons and electrons

**<u>lons</u>** have a <u>different</u> number of  $p^+$  and  $e^-$ .

Metals usually <u>lose</u> electrons to form positively charged cations:

Nonmetals usually <u>gain</u> electrons to form negatively charged anions:


<u>Main group</u> elements tend to form stable ions with the same # electrons as the nearest noble gas.

#### Atomic mass

<u>Atomic mass</u>: relative mass of an atom Unit = amu (atomic mass unit), (also called Dalton, abbrev u)

Definition of amu: 12 amu = mass of 1 carbon-12 atom

Mass spectrometry: measures mass/charge ratio of particles deflected by magnetic field



m/z = atomic mass (amu)

#### Atomic mass

| <u>isotope</u> | <u>atomic mass</u> | <u>abundance</u> |
|----------------|--------------------|------------------|
| neon-20        | 19.992 amu         | 0.9051           |
| neon-21        | 20.994 amu         | 0.0027           |
| neon-22        | 21.991 amu         | 0.0922           |

Molar mass

The <u>mole</u> = the chemist's dozen

1 pair = 2 objects

1 dozen = 12 objects

1 mole = 6.022 x 10<sup>23</sup> objects

6.022 x 10<sup>23</sup> particles/mol = Avogadro's number

1.38 mol Al = <u>?</u> Al atoms

9.23 x 10<sup>25</sup> Pb atoms = <u>?</u> mol Pb

|           | <u>Atomic mass</u> | <u>Molar mass</u> |
|-----------|--------------------|-------------------|
| carbon-12 | 12 amu exactly     | 12 g/mol exactly  |
| carbon    | 12.01 amu          | 12.01 g/mol       |
| neon      | 20.18 amu          | 20.18 g/mol       |
|           |                    |                   |

12.5 g Si = <u>?</u> mol Si

2.6 mol Ag = <u>?</u> g Ag