Chapter 3 - Molecules, compounds, and chemical equations

Chemical bonding is the true difference between compounds and mixtures

<u>**Ionic bond</u>**: attraction of oppositely charged ions (Metal cation and nonmetal anion)</u>

<u>Covalent bond</u>: shared pair of electrons (Between 2 <u>nonmetal</u> atoms <u>only</u>)

Sodium chloride (table salt) Elements and compounds

Atomic elements:

Molecular elements:

- diatomic:
- polyatomic:

Molecular compounds

Molecular compounds: 2 or more covalently bonded nonmetals, grouped as molecules

- Molecular formula: exact number of atoms per molecule
- Empirical formula: simplest ratio of atoms in compound
- Structural formula: shows how atoms are bonded, with lines for covalent bonds

Ionic compounds

Ionic compounds are made from a lattice of positively and negatively charged ions

Formula unit: smallest neutral collection of ions

Polyatomic ion: ion composed of 2 or more atoms (a charged molecule)

Forms ionic compounds with an oppositelycharged ion

Writing formulas for ionic compounds	Naming ionic compounds
 Ionic compounds: positive and negative ions charge-neutral overall (+ charges in formula must 	1. Is it an ionic compound?
 equal - charges) simplest whole-number ratio of ions in formula 	 2. Does the metal have fixed charge or variable charge? Fixed charge: group IA, IIA, Al³⁺, Zn²⁺, Ag⁺
Formula: NaCl	 Variable charge: all other metals
Ion pair:	 Write the ion pair If metal is variable-charge, you must figure out its charge from the formula
Calcium and chlorine:	 4. Name the compound <u>from the ion pair!</u> Fixed charge metal cations are just named for the element
Fe ³⁺ / O ²⁻ :	Na ⁺ : Ag ⁺ : Variable charge metal cations use a roman
Ca ²⁺ / SO ₄ ²⁻ :	numeral to show charge Fe ²⁺ : Fe ³⁺ : Monoatomic nonmetal anions are named with the element root + ide Cl ⁻ :
÷	N ³⁻ : S ²⁻ : P ³⁻ :
ch3blank Page 5	ch3blank Page 6

Naming binary ionic compounds		Polyatomic i	Polyatomic ions		
CaO	ion pair:		<u>Polyatomi</u>	<u>c ions</u> : charged	molecules, multi-atom ions
	name:		Acetate Ammonium	$C_2H_3O_2^-$	Removing one oxygen
NiCl ₂	ion pair:		Bicarbonate		changes ending to -ite:
	name		Carbonate	CO ₃ ²⁻	
			Chlorate	CIO ₃ -	
WS₃	ion pair:		Hydroxide Nitrate	OH⁻ NO₃⁻	
	name:	·	Phosphate Sulfate	PO ₄ ³⁻ SO ₄ ²⁻	Addition of H ⁺ reduces negative charge by 1
vanad	ium (I) oxide	ion pair:	lf >2 oxyar	vions in a	
		formula:	-	hypo- or per-	
silver	nitride	ion pair:			
		formula:			
calciu	m phosphide	ion pair:			
		formula:			
		:h3blank Page 7		ch3blank F	topo 9
	C			CHOOTAILK P	u ₀ , 0

Compounds	containing polyatomic ions, Hydrates	
CuSO ₄	ion pair: name:	1
cobalt (II) r	nitrite ion pair: formula:	
Mn(PO ₄) ₂	ion pair: name:	
Hydrates: contain a certain number of water molecules per formula unit		
CuSO₄ ●	5 H ₂ O =	
		3
		4
		5

Naming binary molecular compounds

- 1. Is it a molecular compound?
- 2. Binary molecular compounds use Greek prefixes in name to show how many atoms are in the formula

G	Greek prefixes			
<u>fc</u>	or quantity			
1	(mono)	NO ₂		
2	di	N ₂ O ₄		
3	tri	11204		
4	tetra	СО		
5				
6		CO ₂		
7	hepta	P2O7		
8		1207		
9	nona			
1	0 deca			

- 3. First element: prefix (not mono) then element name
- 4. Second element: prefix then element root + ide
- 5. Avoid "ao" and "oo" combinations drop first vowel

Naming binary acids	Naming oxyacids		
 <u>Acid:</u> formula with H as first element release H⁺ ions when dissolved in water named as normal binary molecular compounds when pure 	Oxyacids contain hydrogen and an oxyanion (polyatomic ion w/ a nonmetal and oxygen) Use the oxyanion to name the oxyacid:		
Binary acids contain just H and one other nonmetal.	oxyanion <u>acid</u> -ate -ic acid		
 Names of binary acids start with <u>hydro-</u> and end with <u>-ic acid</u> 	-ite -ous acid HNO₃		
HCI (g) = pure binary molecular compound	HNO ₂ H ₃ PO ₄		
HCI (<i>aq</i>) = binary acid HF (<i>aq</i>)	HCIO ₃		
HBr (<i>aq</i>)	HCIO ₂		
HI (<i>aq</i>)	HCIO		
ch3blank Page 11	ch3blank Page 12		

Formula mass and molar mass

<u>Formula mass of a compound</u> is the sum of the atomic masses of all atoms in the compound, multiplied by their subscripts. Unit = amu

 $Fe_2(SO_4)_3 = 1$ formula unit of iron (III) sulfate

formula mass =

<u>Molar mass of a compound</u> is just the formula mass with units of g/mol.

How many H_2O molecules are in 25 mg of H_2O ?

Mass percent composition

Mass percent of element in a compound:

Mass % = $\frac{\text{mass of element}}{\text{total mass of compound}} \times 100\%$

To get this from a chemical formula,

- assume 1 mol of compound
- (use molar masses!)

What is the mass % of C and H in octane, C_8H_{18} ?

Molar mass C₈H₁₈ =

1 mol C₈H₁₈ contains ____ mol C and ____ mol H.

Mass % C =

Mass % H =

Mass percent as a conversion factor

If you're given a mass percent, you can use it as a conversion factor between the element and the compound

A 3.5 kg sample is found to contain 2.6% Pb. How many grams of lead are present?

Mass percent = per 100 grams

100 g sample : _____ g Pb

Conversion factors from chemical formulas

Chemical formulas give the ratio of atoms in a compound

This can also be used to construct <u>mole ratios</u>

1 mol Fe₂(SO₄)₃ contains: _____ mol Fe _____ mol S _____ mol O

How many O atoms are in 8.6 mol Fe₂(SO₄)₃?

How many grams S are in 2.50 mol Fe₂(SO₄)₃?

How many grams Fe are in 18.25 g Fe₂(SO₄)₃? to convert from mass compound to g element, use mass cpd \rightarrow mol cpd \rightarrow mol element \rightarrow mass element Determining a chemical formula from element masses

- You are given:
- the elements present in a compound
- masses OR mass percentages of elements
- You can calculate: The empirical formula

A compound made of C, H, and O is found to contain 68.8% C, 5.0% H, and 26.2% O. What is the empirical formula?

- If given percentages, convert them to grams per 100 g sample. If you're missing one element's mass, subtract from a given total mass.
- 2. Convert each mass to moles using the molar mass of elements

- 3. Use moles to make a formula, divide by smallest numbe
- 4. Make the subscripts whole numbers by multiplying all by 2, 3, 4, or 5.

Calculating molecular formulas

You are given:

- empirical formulamolar mass
- molar ma

You can calculate: • molecular formula

Molecular formulas are always whole-number multiples of empirical formulas

Molecular: C₃H₆ Empirical:

() $x n = C_n H_{2n}$ - For this molecule, n =

 $C_{3}H_{6}$ formula mass = $\frac{47.028 \text{ g/mol}}{CH_{2}}$ formula mass = $\frac{14.026 \text{ g/mol}}{14.026 \text{ g/mol}}$ = n =

Mass spectrometry can be used to determine molar mass of a compound experimentally.

A compound with empirical formula of CH_2O has a molar mass of 60.05 g/mol. What is its molecular formula?

 $n = \frac{\text{molar mass}}{\text{empirical formula mass}} =$

Combustion analysis

Combustion: compound + $O_2 \rightarrow CO_2 + H_2O$

You are given:

- masses of CO₂ and H₂O produced
- which elements are in the sample
- total sample mass (if elements other than C and H present)
- You can calculate: empirical formula
 - (molecular formula if a molar mass is given)

A 4.30 mg sample containing C, H, and O produces 8.59 mg CO_2 and 3.52 mg H_2O upon combustion. What is its empirical formula?

- 1. Convert masses of CO_2 and H_2O to mol C and mol H
- If elements other than C and H, calculate masses of C and H, subtract from the total to get mass of other element, and calculate moles of the other element.
- 3. Use moles of each element to calculate the empirical formula as before.

Difficult combustion problem

A 6.54 mg sample of a compound containing C, H, N, and O produced 8.29 mg CO_2 , 4.53 mg H_2O , and 1.76 mg N_2 upon combustion. Its molar mass was found to be 208.2 g/mol. What is the molecular formula of this compound?

ch3blank Page 19

Chemical equations

A **<u>chemical equation</u>** represents a chemical reaction with chemical formulas.

Phase/state labels: (s)

(I) (g) (aq)

<u>**Reactants</u>**: substances that will react (on left side of equation)</u>

Products: substances resulting from reaction (on right side of equation)

Write the chemical equation with phase labels: Solid calcium reacts with chlorine gas to produce solid calcium chloride: Balancing chemical equations

Balancing chemical equations: add coefficients in front of formulas so that the number of each type of atom is the same on the reactants side and products side

- 1. Only add coefficients, never change subscripts
- 2. Save elements (O₂, Cl₂, Na, etc) for last
- 3. Multiply fractions through so coefficients are simplest whole numbers
- 4. Count polyatomic ions together if they don't react, but count atoms if the polyatomic ion does react

 $C_4H_{10} + O_2 \rightarrow CO_2 + H_2O$

Fe + $O_2 \rightarrow$ Fe₂O₃

Write a balanced chemical equation: Sodium carbonate solid reacts with aluminum chloride to form aluminum carbonate and sodium chloride.