Announcements

Monday, September 21, 2009

Grades are updated in D2L with quiz 1, first 2 labs and first 2 homework assignments.

Quiz 1 answer key is available under Content in the D2L course.

MasteringChemistry due dates (all at 11:59 pm):

• Ch 3: Fri, Sep 25

Exam 1: next Mon, Sep 28.

- 20-25 multiple choice questions
- Short answer (naming, chemical equations)
- 2 show your work problems

For exam practice:

- Practice exams on webpage
- End-of-chapter problems (check answers in back of book)
- Rework MasteringChemistry exercises for practice (without using hints)

Polyatomic ions

Polyatomic ions: charged molecules, multi-atom ions

Acetate Ammonium	$C_2H_3O_2^-$ NH ₄ ⁺		Removing one oxygen <u>changes ending to -ite:</u>
Bicarbonate Carbonate Chlorate Hydroxide Nitrate Phosphate Sulfate	CO ₃ ²⁻ ClO ₃ ⁻	Same charge as p3- c2-	10_2^{-1} : nitrite $0_3^{3^{-1}}$: phosphite 10_2^{-1} : chlorite 10_2^{-1} : chlorite $10_3^{2^{-1}}$: Sulfite Addition of H ⁺ reduces <u>negative charge by 1</u>
If >2 oxyani series, use $a <\circ:$ Bro_x Io_x C	hypo-oi (10 ⁻ 10 ₂ -	r per-	sulfate Soy ²⁻ hydrogen sulfate HSOy ⁻ or (bisulfate) orite Carbonate CO3 ²⁻ hydrogen carbonate HCO2 ⁻
PO4 ³ Phosphal	e hyd phoe	HPO4 rogen pphate	H ₂ P04 d:hydrogen phosphate

ch3c Page 2

Compounds containing polyatomic ions, Hydrates $CuSO_{4} \quad \text{ion pair: } Cu^{\textcircled{2}}, SO_{4}^{2-}$ $1: 1 \quad \text{name: } copper((1)) \text{ sulfate}$ $cobalt(II) \text{ nitrite} \quad \text{ion pair: } (o^{2+}, NO_{2}) \text{ used } (:2 \text{ refined} (:2 \text{ refine$

<u>Hydrates</u>: contain a certain number of water molecules per formula unit

CuSO4•5H2O = Copper (11) sulfate pentahydrate L heat CuSO4 Copper(11) sulfate anhydrons Naming binary molecular compounds

1. Is it a molecular compound?

binary molecular: 2 nonmetals

2. Binary molecular compounds use Greek prefixes in name to show how many atoms are in the formula

Greek prefixes				
<u>for quantity</u>				
	1	(mono)	NO ₂	nitrogen dioxide
	2	di	N ₂ O ₄	dintrogen tetroxide
	3	tri		
	4	tetra	СО	carbon monoxide
	5	peuta		1 In 1
	6	hexa	CO ₂	carbon dioxide
	7	hepta	P.O-	diphosphorous heptoxide
	8	octa	F207	
	9	nona		
	10	deca		

- 3. First element: prefix (not mono) then element name
- 4. Second element: prefix then element root + ide
- 5. Avoid "ao" and "oo" combinations drop first vowel

Naming binary acids

Acid: formula with H as first element

- release H⁺ ions when <u>dissolved in water</u>
- named as normal binary molecular compounds when pure

Binary acids contain just H and one other nonmetal.

 Names of binary acids start with <u>hydro-</u> and end with <u>-ic acid</u>

Naming oxyacids

Oxyacids contain hydrogen and an oxyanion (polyatomic ion w/ a nonmetal and oxygen)

Use the oxyanion to name the oxyacid:

ch3c Page 5

Formula mass and molar mass

Formula mass of a compound is the sum of the atomic masses of all atoms in the compound, multiplied by their subscripts. Unit = amu

Mass percent composition

Mass percent of element in a compound:

Mass % = $\frac{\text{mass of element}}{\text{total mass of compound}} \times 100\%$

To get this from a chemical formula,

- assume 1 mol of compound
- (use molar masses!)

What is the mass % of C and H in octane, C_8H_{18} ?

Molar mass $C_8H_{18} = 114.224 g/mol$

1 mol C_8H_{18} contains $\underline{6}$ mol C and $\underline{8}$ mol H.

Mass % C =
$$\frac{8 \times 12.019}{114.2249} \times 100\% = 84.12\%$$

Mass % H = $\frac{18 \times 1.0089}{114.2249} \times 100\% = 15.88\%$

ch3c Page 8