Announcements

Wednesday, October 07, 2009

MasteringChemistry due dates (all at 11:59pm):

- Ch 4: Wed, Oct 14
- Ch 5: Fri, Oct 23
- Ch 6: Fri, Oct 30

Lab report due dates (all at 3:00pm):

- Exp 5: Wed, Oct 14
- Exp 6: Mon, Oct 19

The next round of graded lab reports will be returned to you this week (some on Friday).

Dissolving of electrolytes

Electrolytes dissociate into ions when dissolving

NaCl(s) → Na⁺(aq) + CR⁻(aq)

Nonelectrolytes **remain as neutral molecules** when dissolving

Acids, Strong/weak electrolytes

Acids are molecular substances that dissociate when dissolved to release H⁺ ions.

Strong electrolytes dissociate completely into ions:

 $NaCl(s) \rightarrow Na^{+}(a_{1}) + (l^{-}(a_{q}))$ $HCI(\underline{a}) \rightarrow H^{+}(aq) + (l^{-}(aq))$

Weak electrolytes do not completely dissociate into ions:

Solubility of ionic compounds

Not all ionic compounds dissolve in water!

- The ones that <u>do</u> are strong electrolytes
- The ones that **do not dissolve** remain solid in their ionic lattice when added to water

(ag)

Solubility Rules for Ionic Compounds

The following table will be given on the exam without the formulas in parentheses.

Compounds Containing the Following Ions Are Mostly Soluble	Exceptions	$(a(NO_3)_2)$
Li ⁺ , Na ⁺ , K ⁺ , NH ₄ ⁺	None	(a 504 (3)
nitrate (NO ₃ ⁻), acetate (C ₂ H ₃ O ₂ ⁻)	None When any of these ions pairs with Ag ⁺ , Hg ₂ ²⁺ , or Pb ²⁺ , the compound is insoluble When sulfate pairs with Sr ²⁺ , Ba ²⁺ , Pb ²⁺ , or Ca ²⁺ the compound is insoluble	
chloride (Cl ⁻), bromide (Br ⁻), iodide (l ⁻) sulfate (SO ₄ ²⁻) (αq)		
Compounds Containing the Following Ions Are Mostly Insoluble	Exceptions	(aq)
hydroxide (OH ⁻), sulfide (S ²⁻)	When either of these ions pairs with $Li^{\star},Na^{\star},K^{\star},orNH_4^{\star},$ the compound is soluble	
(5)	When sulfide (S ^{2.}) pairs with Ca ²⁺ , Sr ²⁺ , or Ba ²⁺ , the compound is soluble	
	When hydroxide (OH ⁻) pairs with Ca ²⁺ , Sr ²⁺ , or Ba ²⁺ , the compound is slightly soluble (<u>for many purposes</u> , these may be considered insoluble)	
a_{2} (0.0 $\frac{2}{2}$) phase hata (0.0 $\frac{3}{2}$)	When either of these ions pairs with Li*, Na*, K*, or $\rm NH_4^*,$ the compound is soluble	

Precipitation reactions

<u>Precipitation reaction</u>: two ionic compounds trade their ions to produce a solid, insoluble product

Write the balanced chemical equation with phase labels for reaction of solutions of potassium iodide and lead(II) nitrate.

Molecular, complete ionic, and net ionic equations

Molecular equation: balanced chemical equation showing neutral formulas for all reactants and products. ventral compounds $Ca(NO_3)_2(aq) + Na_2SO_4(aq) \rightarrow CaSO_4(s) + 2 NaNO_3(aq)$

<u>Complete ionic equation:</u> all <u>strong electrolytes</u> are written as <u>separate ions</u> with their own coefficients and phase labels. (Pure solids, liquids, gases, weak electrolytes, and nonelectrolytes written as molecules.)

$$Ca^{2+}(aq) + 2NO_{3}^{-}(aq) + 2Na^{4}(aq) + SO_{4}^{2-}(aq) \rightarrow$$

$$Ca SO_{4}(s) + 2Na^{4}(aq) + 2NO_{2}^{-}(aq)$$

(insol)

<u>Spectator ions</u> do not participate in the chemical reaction (shown the same on both sides)

Net ionic equation: omits spectator ions - only shows the chemical change that has occurred

$$(a^{2+}(aq) + SO_{4}^{2-}(aq) \rightarrow CaSO_{4}(s)$$

(What happens in the net ionic equation when it's considered "no reaction?" Try it for the combination of Nal and $CaNO_3$)

Acid-base reactions

<u>Acid:</u> produces H⁺ ions in aqueous solutions <u>Base:</u> produces OH⁻ ions in aqueous solutions

Strong acids dissociate completely (they are strong electrolytes) - there are 6 common ones: hemorite

Strong bases are the soluble or slightly soluble hydroxides: NaOH, LiOH, KOH, Ca(OH)₂, Ba(OH)₂

<u>Acid-base neutralization reactions</u> are the combination of an acid and a base to produce water and a salt

Write an equation for the acid-base neutralization reaction of nitric acid and calcium hydroxide $2 \text{HNO}_3(aq) + C_4(oH)_2(aq) \longrightarrow 2 \text{H}_2O(\ell) + C_4(NO_3)_2(aq)$

$$(H^{+} + OH^{-} \rightarrow H_2O(R))$$

Acid-base titrations

<u>**Titration</u>**: controlled addition of one reactant (with known concentration) to another to determine an unknown concentration</u>

 $HCl(aq) + NaOH(aq) \rightarrow H_2O(l) + NaCl(aq)$ Net: $H^+ + OH^- \rightarrow H_2O$

Equivalence point: reaction is complete - equal moles of both reactants completely react with each other

<u>Acid-base indicator</u>: changes color to signal endpoint (phenolphthalein changes pink in excess OH⁻)

Gas-evolution reactions

Sulfides, sulfites, and carbonates form a gaseous product when reacting with an acid

$$2 \text{HCl}(aq) + \text{Na}_{2}\text{S}(aq) \rightarrow \begin{array}{c} \text{H}_{2}\text{S}(g) \\ \text{acid} + \text{sulfide} \end{array} \qquad \begin{array}{c} \text{Hydrogen Sulfide gas} \\ \text{Hcl}(aq) + \text{Na}_{2}\text{SO}_{3}(aq) \rightarrow \begin{array}{c} \text{H}_{2}\text{SO}_{3}(aq) \\ \text{H}_{2}\text{SO}_{3}(aq) \end{pmatrix} + \text{NaCl}(aq) \\ \text{Acid} \qquad \text{Sulfite} \qquad \begin{array}{c} \text{Sulfite} \\ \text{Sulfite} \\ \text{H}_{2}O(\ell) + \text{SO}_{2}(g) \\ \text{H}_{2}O(\ell) + \text{SO}_{2}(g) \\ \text{Hol}(aq) \\ \text{Product} \\ \text{Hcl}(aq) + \text{Na}_{2}\text{CO}_{3}(aq) \rightarrow \begin{array}{c} \text{H}_{2}CO_{3}(aq) \\ \text{H}_{2}O(\ell) + \text{SO}_{2}(g) \\ \text{Hol}(aq) \\ \text{Hol}(aq) \\ \text{Hol}(\ell) + \text{SO}_{2}(q) \\ \text{Hol}(\ell) \\$$

ch4c Page 9