Announcements

Wednesday, October 07, 2009

MasteringChemistry due dates (all at 11:59pm)

- Ch 4: Wed, Oct 14
- Ch 5: Fri, Oct 23
- Ch 6: Fri, Oct 30

Lab report due dates (all at 3:00pm):

- Exp 5: Wed, Oct 14
- Exp 6: Mon, Oct 19

Oxidation-reduction reactions

Oxidation-reduction (redox) reaction: electrons are transferred from one reactant to the other

Oxidation numbers: keep track of electrons in a reaction

Rules for Assigning Oxidation Numbers (must be memorized)

Rule	Applies to	Statement
1	Elements	The oxidation number of an atom in an element is zero
2	Monatomic ions	The oxidation number of an atom in a monatomic ion equals the charge on the ion.
3	Oxygen	The oxidation number of oxygen is -2 in most of its compounds. (An exception is O in H_2O_2 and other peroxides, where the oxidation number is -1 .)
4	Hydrogen	The oxidation number of hydrogen is +1 in most of its compounds. (The oxidation number of hydrogen is -1 in binary compounds with a metal, such as CaH ₂ .)
5	Halogens	The oxidation number of fluorine is -1 in all of its compounds. Each of the other halogens (Cl, Br, I) has an oxidation number of -1 in binary compounds, except when the other element is another halogen above it in the periodic table or the other element is oxygen.
6	Compounds and ions	The sum of the oxidation numbers of the atoms in a compound is zero. The sum of the oxidation numbers of the atoms in a polyatomic ion equals the charge on the ion.

Oxidation-reduction reactions

OIL RIG LED GER

<u>Oxidation</u>: loss of electrons (oxidation # increases) <u>**Reduction**</u>: gain of electrons (oxidation # decreases)

<u>Oxidizing agent</u>: the reactant that is itself reduced **<u>Reducing agent</u>**: the reactant that is itself oxidized

Identify the elements that are oxidized and reduced, and identify the oxidizing agent and reducing agent.

 $2 \operatorname{Na}(s) + \operatorname{Cl}_2(g) \rightarrow 2 \operatorname{NaCl}(s)$ $e \operatorname{lements}$ $0 \operatorname{xilation}$ $Cl_2 \operatorname{is} \operatorname{Dxilation}$ $Cl_2 \operatorname{is} \operatorname{Dxilation}$ $Na \operatorname{is} \operatorname{reducing} \operatorname{agent}$

<u>Combustion reaction</u>: an oxidation reduction reaction with O_2 as a reactant.

Carbon-containing compounds undergo combustion to form CO_2 and H_2O

ch4d Page 3