Chapter 6: Thermochemistry

<u>Thermochemistry</u>: study of the relationships between chemistry and energy

Energy: capacity to do work

<u>Work:</u> result of a force acting over a certain distance, one way to transfer energy

Types of energy:

motion of molecules

- Kinetic energy: energy of motion
 - <u>Thermal energy:</u> energy associated with temperature, transferred by <u>heat</u>
- <u>Potential energy</u>: energy of position or composition
 - □ **<u>Chemical energy</u>**: energy associated with the composition of chemical compounds

Law of conservation of energy: energy cannot be created or destroyed, only transferred

- One object to another
- One type of energy to another

Units of energy:

- joule (J) = 1 kg \cdot m² \cdot s⁻² (SI unit) $l \not\in J = loop J$
- calorie (cal) = 4.184 J (heat 1 g H₂O · 1 °C) English
- Calorie (Cal) = 1 kcal = 1000 cal (food labels)
- kilowatt-hour (kWh) = 3.60 x 10⁶ J
- 🖷 BTU

System and surroundings

The transfer of energy can be considered in terms of a system and its surroundings

- <u>System</u>: a specific place or substance
- **<u>Surroundings</u>**: everything outside of the system

In thermochemistry, the system is usually a <u>chemical</u> <u>reaction</u>, and it can use heat and work to transfer energy to or from its surroundings:

- Combustion of natural gas in a furnace system: CHy+Oz ~ CO2 + 2Hz D Sys ~ SMrr Chem. energy ~ thermal energy
- Combustion of gasoline in a car's engine
 sys -> surr chem energy
 k: untic pupping
- Chemical cold pack

surr - sys thermal -> chemical

First law of thermodynamics

1st law: the total energy of the universe is constant

- law of conservation of energy
- perpetual motion? impossible

Internal energy (E): sum of all forms of kinetic and potential energy in a certain system

Internal energy is a state function: it depends <u>only</u> on the makeup of the system itself at one point in time, not its history (it doesn't add up over time)

The **<u>change</u>** in any state function can be considered:

 $\Delta E = E_{\text{final}} - E_{\text{initial}}$

Work and heat

The change in a system's internal energy, ΔE , depends on how much work (*w*)was done and how much heat was transferred (*q*):

 $(\Delta E = E_{\text{final}} - E_{\text{initial}})$ $\Delta E = q + w$ Signs are always considered from the system's perspective.

```
If energy flows out of the system, \Delta E is: -
If energy flows into the system, \Delta E is: +
```

```
If heat flows out of the system, q is: 
If heat flows into the system, q is:
```

```
Measuring heat: Calculating the amount of heat transferred
```

Heat always transfers thermal energy from areas of $\underline{h:h}$ temperature to areas of $\underline{(\circ w)}$ temperature

Calculating heat transfers

$$\Delta t = t - t$$

final initial

For an object, $q = C \cdot \Delta t$ $(J) = (T_{gc}) \cdot (\chi)$

For a certain mass of a substance, $q = (C_5) \cdot M \cdot \Delta t$ $(J) = (J_g \cdot c)(g)(c_c)$

How much energy is required to heat 50.0 g water from 25.0 °C to 100.0 °C? $q = (C_s)(m)(\Delta t)$ $= (4.18^{37}/_{9^{\circ}c})(50.0_{9})(75.0^{\circ}c)$ $= 1.57 \times 10^{4} J$ = 15.7 kJ

How long will this take a 1000 W hotplate (assuming all of the heat is transferred to the water)? (1 W = 1 J/s)

TABLE 6.4	Specific Heat Capacities of Some Common Substances
Substance	Specific Heat Capacity, $C_{s} (J/g \cdot C)^{*}$
Elements	
Lead	0.128
Gold	0.128
Silver	0.235
Copper	0.385
Iron	0.449
Aluminum	0.903
Compounds	
Ethanol	2.42
Water	4.18
Materials	
Glass (Pyrex)	0.75
Granite	0.79
Sand	0.84
*At 298 K. Copyright © 2008 Pearson Prentice Hall, Inc.	

ch6a Page 5