Chapter 6: Thermochemistry

<u>Thermochemistry</u>: study of the relationships between chemistry and energy

Energy: capacity to do work

<u>Work:</u> result of a force acting over a certain distance, one way to transfer energy

Types of energy:

- Kinetic energy: energy of motion
 - <u>Thermal energy:</u> energy associated with temperature, transferred by <u>heat</u>
- <u>Potential energy</u>: energy of position or composition
 - <u>Chemical energy</u>: energy associated with the composition of chemical compounds

Law of conservation of energy: energy cannot be created or destroyed, only transferred

- One object to another
- One type of energy to another

Units of energy:

- joule (J) = $1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-2}$ (SI unit)
- calorie (cal) = 4.184 J (heat 1 g H₂O · 1 °C)
- Calorie (Cal) = 1 kcal = 1000 cal (food labels)
- kilowatt-hour (kWh) = 3.60 x 10⁶ J

System and surroundings

The transfer of energy can be considered in terms of a system and its surroundings

- <u>System</u>: a specific place or substance
- **<u>Surroundings</u>**: everything outside of the system

In thermochemistry, the system is usually a <u>chemical</u> <u>reaction</u>, and it can use heat and work to transfer energy to or from its surroundings:

- Combustion of natural gas in a furnace
- Combustion of gasoline in a car's engine
- Chemical cold pack

First law of thermodynamics

1st law: the total energy of the universe is constant

- law of conservation of energy
- perpetual motion?

Internal energy (E): sum of all forms of kinetic and potential energy in a certain system

Internal energy is a state function: it depends <u>only</u> on the makeup of the system itself at one point in time, not its history (it doesn't add up over time)

The **<u>change</u>** in any state function can be considered:

 $\Delta E = E_{\text{final}} - E_{\text{initial}}$

Work and heat

The change in a system's internal energy, ΔE , depends on how much work (*w*)was done and how much heat was transferred (*q*):

 $\Delta E = q + w \qquad (\Delta E = E_{\text{final}} - E_{\text{initial}})$

<u>Signs</u> are always considered from the system's perspective.

If energy flows **out of** the system, ΔE is: If energy flows **into** the system, ΔE is:

If heat flows **out of** the system, *q* is: If heat flows **into** the system, *q* is:

Measuring heat:

Heat always transfers thermal energy from areas of _____ temperature to areas of _____ temperature

Heat capacity (C): heat required to raise the temperature of an object by 1 °C Units:

Specific heat capacity (C_s or s): heat required to raise the temperature of **<u>1 g of a substance</u>** by 1 °C Units: Calculating heat transfers

For an object, q =

For a certain mass of a substance, q =

How much energy is required to heat 50.0 g water from 25.0 °C to 100.0 °C?

How long will this take a 1000 W hotplate (assuming

all of the heat is transferred

to the water)? (1 W = 1 J/s)

TABLE 0.4	Specific Heat Capacities of Some Common Substances
Substance	Specific Heat Capacity, $C_{\rm S} \left({\rm J/g} \cdot {\rm ^{o}C} \right)^{*}$
Elements	
Lead	0.128
Gold	0.128
Silver	0.235
Copper	0.385
Iron	0.449
Aluminum	0.903
Compounds	
Ethanol	2.42
Water	4.18
Materials	
Glass (Pyrex)	0.75
Granite	0.79
Sand	0.84

Copyright © 2008 Pearson Prentice Hall, Inc.

Reaction work

What if the system is a <u>chemical reaction</u> that gives off or absorbs heat?

$\Delta E_{\rm rxn} = q + w$

The most common work a chemical reaction does is expanding gases against an exterior pressure (pressure-volume work).

 $w = -P\Delta V$

But usually we are mostly interested in the heat exchanged with the surroundings

If $\Delta V = 0$, w = 0 and $\Delta E_{rxn} = q_V$ (constant volume)

If *P* is constant, we can use a different state function called enthalpy to only consider heat transferred.

Constant-volume calorimetry

A **bomb calorimeter** is used to measure ΔE_{rxn}


```
\Delta E_{rxn} = q + w

w = -P\Delta V

If \Delta V = 0, w = 0 and \Delta E_{rxn} = q_V (constant volume)
```

- q is a measurable energy transfer for a certain experimental process
- State functions like ΔE are more general they're given for a balanced chemical equation or per mole of a substance

```
q_{cal} = C_{cal} \Delta t (C_{cal} is given)

q_{rxn} = -q_{cal}

\Delta E_{rxn} = q_{rxn} / n
```

Constant-volume calorimetery

 $q_{cal} = C_{cal} \Delta t$ (C_{cal} is given) $q_{rxn} = -q_{cal}$ $\Delta E_{rxn} = (q_{rxn}) / n$

2.14 g C₅H₁₂ is combusted in a bomb calorimeter and the temperature rises from 25.50 °C to 41.23 °C. The heat capacity of the calorimeter is 6.23 kJ/°C. What is ΔE for the combustion of C₅H₁₂ in kJ/mol?

ch6blank Page 7

 ΔH , Change in enthalpy

It's more convenient to do a reaction open to the atmosphere, where pressure is constant.

The heat exchanged in a specific experiment is q_P and its related state function for a general process is ΔH : change in enthalpy.

Since ΔH only involves the heat given off or absorbed, it has the same sign conventions as q:

Endothermic reaction: heat is transferred from surroundings to system (inwards) ΔH is:

Exothermic reaction: heat is transferred from system to surroundings (outwards) ΔH is:

Thermochemical equations

 ΔH_{rxn} is always given per a balanced chemical equation.

Thermochemical equation:

- balanced chemical equation
- thermochemical state function (ΔH_{rxn})
- molar interpretation (coefficients = # moles)

2 H₂(g) + O₂(g) \rightarrow 2 H₂O(g); ΔH_{rxn} = -483.7 kJ

How much heat (in kJ) is given off when 20.0 g $H_{\rm 2}$ react with excess oxygen?

Constant-pressure calorimetry

 ΔH_{rxn} can be measured using a constant-pressure calorimeter

The Coffee-Cup Calorimeter

We assume all of the heat lost by the reaction is gained by the solution (or vice-versa), and since there is a varying amount of solution, we use its specific heat capacity (C_s or s)

```
q_{soln} = (m_{soln})(C_{s,soln})(\Delta t)
q_{rxn} =
```

If the reaction is made only of dilute solutions, you can make these assumptions:

- $C_{s,soln} = C_{s,water} = 4.184 \text{ J/g}^{\circ}\text{C}$
- *m*_{solutions} = *m*_{water}
- d_{solutions} = 1 g/mL

Constant-pressure calorimetry problem

50.0 mL of 0.500 M H₂SO₄(aq) were added to 20.0 mL of 0.500 M NaOH in a coffee-cup calorimeter. The temperature rose from 25.00 °C to 27.20 °C. Assume C_s = 4.184 J/g°C. What is q_{rxn} in kJ?

What is ΔH_{rxn} for the following balanced chemical equation?

 $H_2SO_4(aq) + 2 NaOH(aq) \rightarrow Na_2SO_4(aq) + 2 H_2O(I); \Delta H_{rxn} = ?$

Find the limiting reactant (LR):

What is n_{LR} for the reaction that was performed?

 $\Delta H_{\rm rxn} = {\rm coefficient_{LR}} \times \frac{q_{\rm rxn}}{n_{\rm LR}}$

ch6blank Page 11

 ΔH and Hess's Law

Thermochemical state functions like ΔH are given for a certain chemical equation, where coefficients = # mol

1. Doubling coefficients doubles ΔH , etc.

2 H₂(g) + O₂(g) → 2 H₂O(g); ΔH = -483.6 kJ 4 H₂(g) + 2 O₂(g) → 4 H₂O(g); ΔH = H₂(g) + $\frac{1}{2}$ O₂(g) → H₂O(g); ΔH =

2. Reversing an equation changes the sign of ΔH

 $6 H_2O(g) \rightarrow 6 H_2(g) + 3 O_2(g); \Delta H =$

3. Adding equations adds their ΔH values

Find ΔH_{rxn} for the following reaction:

 $\operatorname{CO}(g) + \operatorname{NO}(g) \longrightarrow \operatorname{CO}_2(g) + \frac{1}{2} \operatorname{N}_2(g); \quad \Delta H = ?$

Use the following reactions with known ΔH values:

 $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g); \quad \Delta H = -283.0 \text{ kJ}$ $N_2(g) + O_2(g) \rightarrow 2NO(g); \quad \Delta H = 180.6 \text{ kJ}$

Hess's law practice

Find ΔH_{rxn} for the following reaction:

4 NH₃(g) + 5 O₂(g) → 4 NO(g) + 6 H₂O(g); ΔH = ?

Use the following reactions with known ΔH values:

- 1. $N_2(g) + O_2(g) \rightarrow 2 NO(g); \quad \Delta H = 180.6 \text{ kJ}$
- 2. $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g); \Delta H = -91.8 kJ$
- 3. $2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g); \Delta H = -483.6 \text{ kJ}$

Standard enthalpies of formation

Standard thermodynamic states:

- gases: 1 atm
- liquids or solids: most stable form, 1 atm, 25 °C
- solutions: 1 M concentration

Some common standard states:

H ₂	Fe	Hg
Cl ₂	Br ₂	I ₂
C(graphite)		

<u>Standard enthalpy of formation</u>: $\Delta H_{f^{o}}$

enthalpy change when 1 mol of a compound is formed from its elements in their standard states

Write the chemical equation for $\Delta H_{f^{0}}$ of NaCl(s)

Write the chemical equation for $\Delta H_{f^{\circ}}$ of $NH_{3}(g)$

 $\Delta H_{f^{0}}$ for any element in its standard state = 0

Using standard enthalpies of formation

Calculate ΔH° for the following reaction using standard enthalpies of formation:

 $4 \text{ NH}_{3}(g) + 5 \text{ O}_{2}(g) \rightarrow 4 \text{ NO}(g) + 6 \text{ H}_{2}\text{O}(g); \ \Delta H^{\circ} = ?$

<u>Compound</u>	<u>ΔH_f° (kJ/mol)</u>
NH₃(<i>g</i>)	-45.9
O ₂ (<i>g</i>)	
NO(g)	90.3
$H_2O(g)$	-241.8

 $\Delta H^{o}_{rxn} = \Sigma n \Delta H_{f}^{o} (products) - \Sigma n \Delta H_{f}^{o} (reactants)$

ch6blank Page 16