Chapter 7: The Quantum-Mechanical Model of the Atom

Light = electromagnetic radiation

Wave-particle duality: light has wave-like AND particle-like properties

frequency unit: hertz = $Hz = s^{-1}$ (cycles per second)

 $c = \lambda v$ where $c = 3.00 \times 10^8$ m/s (speed of light in vacuum)

The electromagnetic spectrum

White visible light can be separated into its component colors through a prism

Copyright © 2008 Pearson Prentice Hall, Inc.

The Electromagnetic Spectrum

Evidence for the wave and particle natures of light

Interference From Two Slits

The Photoelectric Effect

The particle nature of light

1905: Albert Einstein: **photoelectric effect**

- electrons are ejected from metal only after a certain frequency (v) of light hits it
- 1 photon of light can eject 1 electron IF that photon has enough energy

photon: a individual packet or "particle" of light

E = hv where:

- *E* = energy of one photon
- $h = Planck's constant = 6.63 \times 10^{-34} J \cdot s$

since $c = \lambda v$, v = and E =

How much energy is in one photon of blue light with a wavelength of 473 nm?

A gas lamp is a sealed glass tube that contains a gas sample, and glows when a high voltage is applied to it.

Hg(*g*)

But <u>only certain</u> <u>wavelengths</u> of

light are given off by a gas lamp.

Compare with the continuous spectrum given off by a white light source like a light bulb.

Copyright © 2009 Pearson Prentice Hall, Inc.

Bohr model and emission spectra

The Bohr Model and Emission Spectra

Copyright © 2008 Pearson Prentice Hall, Inc.

Bohr's hydrogen atom model: (Niels Bohr, ~ 1910)

- Electrons in the H atom can occupy only certain energy levels, and the energy of the electron determines which energy level it occupies.
- If an electron is promoted to a higher energy level, it must absorb energy
- If an electron drops to a lower energy level, it gives off energy
- The amount of energy transferred = the energy difference between the levels

The wave-particle duality for electrons

Uncertainty and indeterminacy

The wave and particle natures of the electron are **complimentary** properties - the more you know about one, the less you know about the other

Heisenberg uncertainty principle:

- Position of an electron: particle nature
- Momentum of an electron: wave nature
- It's impossible to know both precisely at any one time

$$(\Delta x) \cdot (m \Delta v) \geq \frac{h}{4\pi}$$

But, quantum mechanics allows us to calculate the **probability** of an electron behaving a certain way:

<u>Wavefunction</u> (ψ): mathematical equation that describes the wavelike properties of an electron

<u>Quantum numbers</u>: 4 variables in the wavefunction that, combined, describe a single electron

<u>Orbital</u>: a solution to a wavefunction with a certain combination of quantum numbers a 3-dimensional volume inside of which an electron is likely to be found Principal quantum number, n

Principal quantum number, *n*: determines overall size and energy of an orbital.

n = 1, 2, 3, ...

Energy of an electron **in a hydrogen atom** depends only on *n*:

 $E_{\rm photon} = -\Delta E_{\rm electron}$

Calculate the energy and wavelength (in nm) of a photon emitted when an electron in a hydrogen atom makes a transition from an orbital in n = 3 to n = 2. $h = 6.626 \times 10^{24}$ J·s, $c = 3.00 \times 10^8$ m/s Angular momentum quantum number, *l*

Angular momentum quantum number, *l*, determines

the shape of the orbital.

Possible values of ℓ = 0, 1, 2, ... (n - 1)

<u></u>	<u>letter</u>	<u>shape</u>	S	р
0	S	spherical	y x	
1	р	2 lobes		
2	d	clover		z
3	f	complex		y x
			a	f

n and ℓ define subshells:

<u>n</u>	<u></u>	<u>subshell</u>
1	0	1s
2	0	2s
2	1	2р

<u>Magnetic quantum number</u>, m_{ℓ} , defines the orientation of individual orbitals within a subshell

<u>n</u>	<u></u>	<u>subshell</u>	<u>m</u> _l	<u>number of orbitals</u>
1	0	1s	0	1
2	0	2s	0	1
2	1	2p	-1, 0, 1	3
3				

subshell # or orbitals	<u>n, ℓ, and m_ℓ define an orbital</u>
S	
n	<i>n</i> :
р	l:
d	m_{ℓ} :
f	

Orbitals

Every s subshell has a single spherical orbital

Every p subshell has 3 dual-lobed orbitals:

Every d subshell has 5 orbitals:

Copyright © 2008 Pearson Prentice Hall, Inc.