Chapter 7: The Quantum-Mechanical Model of the Atom Light $=$ electromagnetic radiation

Wave-particle duality: light has wave-like AND particle-like properties

The wave nature of light

amplitude: dist from
origin to peak


```
Different wavelengths, different colors
```

Different amplitudes, different brightness
 to next
frequency (v):
\# of full waves that pass a point per unit
 of time
frequency unit: hertz $=\mathrm{Hz}=\mathrm{s}^{-1}$ (cycles per second)
$c=\lambda v$ where $c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (speed of light in vacuum)

White visible light can be separated into its component colors through a prism

Copyright © 2008 Pearson Prentice Hall, Inc.

The Electromagnetic Spectrum

Evidence for the wave and particle natures of light

Interference From Two Slits

Copyright © 2008 Pearson Prentice Hall, Inc.

The Photoelectric Effect

Copyright © 2008 Pearson Prentice Hall, Inc.

The particle nature of light
1905: Albert Einstein: photoelectric effect

- electrons are ejected from metal only after a certain frequency (v) of light hits it
- 1 photon of light can eject 1 electron IF that photon has enough energy
photon: a individual packet or "particle" of light
$E=h v$ where:
- E = energy of one photon
- $h=$ Planck's constant $=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
since $c=\lambda v, \quad v=\quad$ and $E=$

How much energy is in one photon of blue light with a wavelength of 473 nm ?

A gas lamp is a

 sealed glass tube that contains a gas sample, and glows when a high voltage is applied to it.

But only certain wavelengths of light are given off by a gas lamp.

White-light spectrum spectrum given off by a white light source like a light bulb.

Compare with the continuous

Neon light spectrum
Copyright © 2009 Pearson Prentice Hall, Inc.

Bohr model and emission spectra
The Bohr Model and Emission Spectra

Copyright © 2008 Pearson Prentice Hall, Inc.

Bohr's hydrogen atom model: (Niels Bohr, ~ 1910)

- Electrons in the H atom can occupy only certain energy levels, and the energy of the electron determines which energy level it occupies.
- If an electron is promoted to a higher energy level, it must absorb energy
- If an electron drops to a lower energy level, it gives off energy
- The amount of energy transferred = the energy difference between the levels

The wave-particle duality for electrons

Copyright © 2008 Pearson Prentice Hall, Inc.

Uncertainty and indeterminacy
The wave and particle natures of the electron are complimentary properties - the more you know about one, the less you know about the other

Heisenberg uncertainty principle:

- Position of an electron: particle nature
- Momentum of an electron: wave nature
- It's impossible to know both precisely at any one time

$$
(\Delta x) \cdot(m \Delta v) \geq \frac{h}{4 \pi}
$$

But, quantum mechanics allows us to calculate the probability of an electron behaving a certain way:

Wavefunction (ψ) : mathematical equation that describes the wavelike properties of an electron

Quantum numbers: 4 variables in the wavefunction that, combined, describe a single electron

Orbital: a solution to a wavefunction with a certain combination of quantum numbers a 3-dimensional volume inside of which an electron is likely to be found

Principal quantum number, n

Principal quantum number, n : determines overall size

 and energy of an orbital.$$
n=1,2,3, \ldots
$$

Energy of an electron in a hydrogen atom depends only on n :

$$
\begin{aligned}
& E=-2.18 \times 10^{-18} \mathrm{~J} \cdot \frac{1}{n^{2}} \\
& \Delta E=E_{\text {final }}-E_{\text {initial }} \\
& E_{\text {photon }}=-\Delta E_{\text {electron }}
\end{aligned}
$$

Calculate the energy and wavelength (in nm) of a photon emitted when an electron in a hydrogen atom makes a transition from an orbital in $n=3$ to $n=2$. $h=6.626 \times 10^{24} \mathrm{~J} \cdot \mathrm{~s}, c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Angular momentum quantum number, ℓ

Angular momentum quantum number, ℓ, determines the shape of the orbital.

$$
\text { Possible values of } \ell=0,1,2, \ldots(n-1)
$$

n and ℓ define subshells:

\underline{n} subshell

10 1s
20 2s
$212 p$

Magnetic quantum number, m_{ℓ}
Magnetic quantum number, m_{ℓ}, defines the orientation of individual orbitals within a subshell

Possible values for m_{ℓ} : integers $-\boldsymbol{\ell}$ to $+\boldsymbol{\ell}$

$\underline{\boldsymbol{n}}$	$\underline{\boldsymbol{\ell}}$	$\underline{\text { subshell }}$	$\underline{\boldsymbol{m}_{\ell}}$	number of orbitals
1	0	1 s	0	1
2	0	2 s	0	1
2	1	2 p	$-1,0,1$	3
3				

subshell \# or orbitals
S
p
d
f
$\underline{n, \ell}$, and m_{ℓ} define an orbital
n:
$\ell:$
m_{ℓ} :

Orbitals

Every s subshell has a single spherical orbital

Every p subshell has 3 dual-lobed orbitals:

Every d subshell has 5 orbitals:

Copyright © 2008 Pearson Prentice Hall, Inc.

