Chapter 8: Periodic properties of the elements

<u>Electron configuration</u>: shows which orbitals are occupied in an atom, and how many electrons they contain

<u>Ground state</u>: lowest energy, most stable state for an atom - has all electrons in the lowest energy possible orbitals

The energy of an electron in an H atom depends only on the principal quantum number, *n*, so in its ground state, the electron in an H atom occupies a ____ orbital.

Electron configuration:

Orbital diagram: figure that organizes electrons into their orbitals. Orbital = box, electron = arrow in box

H: _____

<u>Electron spin</u>: direction of an electron's inherent angular momentum - this creates a magnetic field around the electron that either points **up** or **down**.

Spin quantum number, *m_s*, defines electron spin

•
$$m_s = +\frac{1}{2}$$
 : up spin

• $m_s = -\frac{1}{2}$: down spin

Multi-electron atoms

The first 3 quantum numbers define an orbital

All 4 quantum numbers define one electron in an atom
n: size of orbital
l: shape of orbital
m_l: orientation of orbital
m_s: spin of electron in that orbital

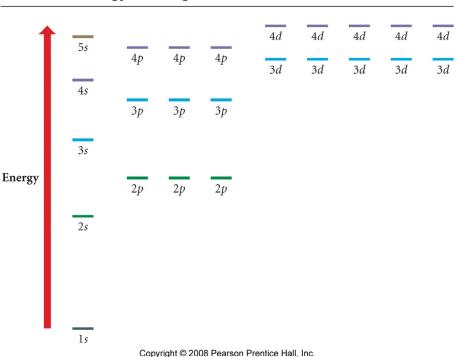
Pauli exclusion principle: no two electrons in an atom can have the same four quantum numbers

This means each orbital can hold no more than _____ electrons

He, 2 electrons, ground state electron configuration:

Orbital diagram:

Be, 4 electrons, configuration:

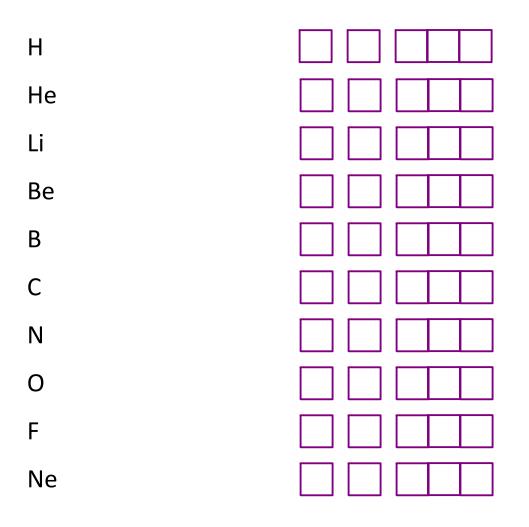

Orbital diagram:

Energy of electrons in multi-electron atoms

In hydrogen, *n* is the only quantum number necessary to calculate the energy of an orbital

In multi-electron atoms, both n and ℓ influence the energy of an orbital

Energies of *l*: (lowest) **s** < **p** < **d** < **f** (highest)


General Energy Ordering of Orbitals for Multielectron Atoms

B (5 electrons) - configuration:

Orbital diagram:

Also, since energies get closer together as *n* increases, a **4s** orbital is lower in energy than a **3d** orbital

Electron configurations

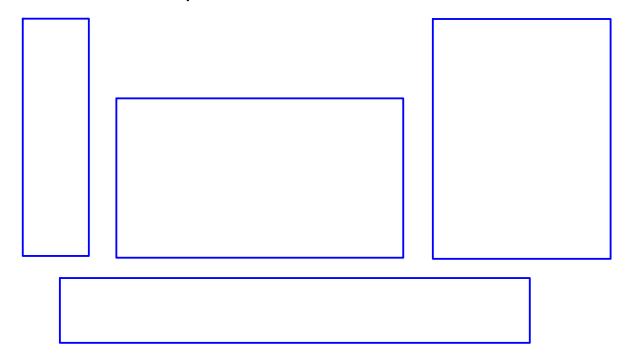
<u>Hund's rule</u>: Electrons fill orbitals with equal energy singly first with parallel spins.

Inner electrons: A full noble gas electron configuration inside an atom - represented with noble gas symbol in brackets to make **abbreviated electron configuration.**

Periodic table and valence electrons

$ \begin{array}{c} 1 \\ \mathbf{H} \\ 1 \\ \mathbf{s}^{1} \end{array} $	2A	3A	4A	5A	6A	7A	8A 2 He 1s ²
3 Li $2s^1$	4 Be $2s^2$	$ \begin{array}{c} 5\\ \mathbf{B}\\ 2s^22p^1 \end{array} $	$\begin{array}{c} 6 \\ \mathbf{C} \\ 2s^2 2p^2 \end{array}$	7 N $2s^2 2p^3$	$8 \\ \mathbf{O} \\ 2s^2 2p^4$	9 F $2s^2 2p^5$	$ \begin{array}{r} 10 \\ Ne \\ 2s^2 2p^6 \end{array} $
11 Na 3s ¹	12 Mg $3s^2$	$ \begin{array}{c} 13\\ \textbf{Al}\\ 3s^23p^1 \end{array} $	$ \begin{array}{r} 14 \\ \mathbf{Si} \\ 3s^2 3p^2 \end{array} $	15 P $3s^23p^3$	$\frac{16}{\mathbf{S}}$ $3s^2 3p^4$	17 Cl $3s^2 3p^5$	18 Ar 3s23p6

Outer Electron Configurations of Elements 1–18


Copyright © 2008 Pearson Prentice Hall, Inc.

<u>Valence electrons</u>: number of electrons in outermost principal energy level (*n*) (plus outermost d electrons for transition elements)

<u>Core electrons</u>: inner electrons plus filled d or f sublevels

Periodic table and filling order

The *reason* the periodic table has its shape is because of the orbitals occupied in those elements.

	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	IA	IIA		IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
	1	1																	2
1	H																		He
	1.008		-											0		-			4.003
	3	4												5	6	7	8	9	10
2	Li	Be												B	С	N	0	F	Ne
	6.939	9.012	-											10.81	12.01	14.01	16.00	19.00	20.18
1923	11	12												13	14	15	16	17	18
3	Na	Mg												AI	Si	Ρ	S	CI	Ar
	22.99	24.31	-								-			26.98	28.09	30.97	32.07	35.45	39.95
pg ,	19	20		21	22	23 V	24	25	26	27	28	29	30	31	32	33	34	35	36
Period	K 39,10	Ca 40.08		Sc 44.96	Ti 47.90	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93		Cu 63.55	Zn 65.38	Ga 69.72	Ge 72.61	As 74.92	Se 78.96	Br 79.90	83.80
_	39.10	38		39	47.90	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ĩ	Xe
	85.47	87.62		88.91	91.22	92.91		(98)	101.07	in the second					North Control Inc.		1011000	126.90	131.29
	55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ва	*	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	132.91	137.33		174.97	178.49	180.9	5 183.84	186.21	190.23	192.2	2 195.0	8 196.97	-	204.38	207.2	208.98	(209)	(210)	(222)
	87	88	89-102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh		Uuc
	(223)	(226)		(257)	(261)	(262)	(271)	(272)	(270)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(292)		(294)
			ſ	57	58	59	60	61	62	63	64	65	66	67	68	69	70		
			*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
				138.91	140.12	140.91	144.24	(147)	150.36	151.96	157.25	158.93		2002202		120222252	173.04		
			ŀ	89	90	91	92	93	94	95	96	97	98	99	100	101	102		
			**	Ac	Th	Pa	U	Np	Pu	Am	Ст	Bk	Cf	Es	Fm	Md	No		
				(227)	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)		

Electron configurations

Ca:

Sc:

Sometimes, electron configurations are rearranged into order of increasing *n* (to group valence electrons better)

Se:

Abbreviated configurations:

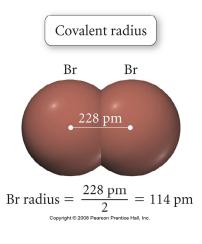
Po:

Bh:

Electron configurations and magnetic properties

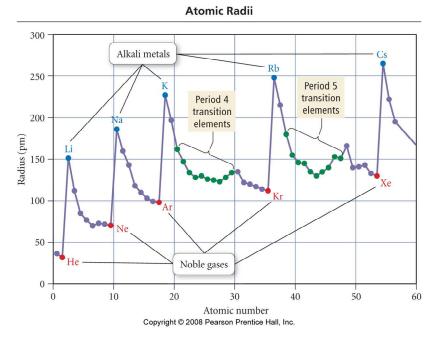
4s has lower energy than 3d, but they are still close.

Mn:	
Zn:	
Cr:	
Cu:	

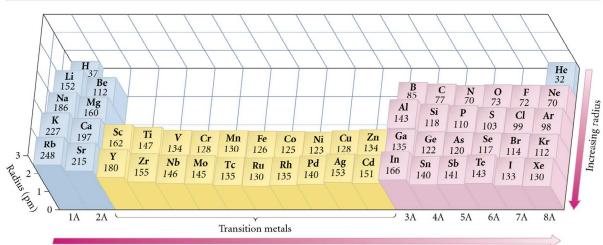

(You should be aware of the conditions behind these anomalies and be able to explain it if it occurs elsewhere, but do not memorize every exception on the periodic table!)

Magnetic properties

Unpaired electrons in the orbital diagram will make the element **paramagnetic** (weakly attracted to magnetic field)

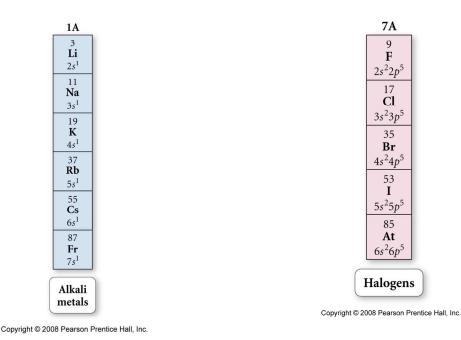

If all electrons are paired, the element is **diamagnetic** (not attracted by magnetic field)

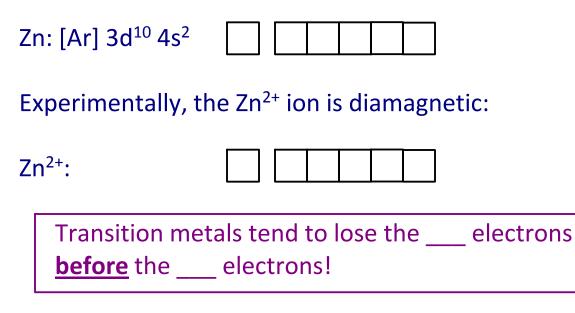
Periodic trends in atomic radius



Atomic radius *increases* going down a column:

Atomic radius <u>decreases</u> going across a period (row):

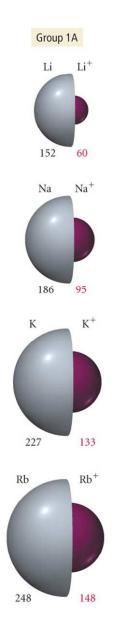



Copyright © 2008 Pearson Prentice Hall, Inc.

lons

Main group ions:

Transition metal ions:



(Writing the configuration in order of increasing *n* makes ion formation easier!)

Ag⁺:

Ionic radius

Na: [Ne] 3s¹ Na⁺: [Ne]

Cl: [Ne] 3s²3p⁵ Cl⁻: [Ne] 3s²3p⁶

ch8blank Page 11

Ionization energy

Ionization energy (IE): energy required to remove 1 electron from an atom or ion

Na \rightarrow IE₁ = 496 kJ/mol Na⁺ \rightarrow IE₂ = 4560 kJ/mol

Trends in first ionization energy (IE₁):

 $Mg \rightarrow IE_1 = 738 \text{ kJ/mol}$

(additional protons across a period will increase attraction to the electrons)

$$K \rightarrow IE_2 = 419 \text{ kJ/mol}$$

(an additional shell shields the valence electrons from the nuclear attraction)

Ionization energy and Electron affinity

$2 \operatorname{Li}(s) + 2 \operatorname{H}_2 O(I) \rightarrow 2 \operatorname{LiOH}(aq) + \operatorname{H}_2(g)$

 $\begin{array}{rcl} \mathsf{Li} & \rightarrow & \mathsf{Li^{+}} \\ \mathsf{Na} & \rightarrow & \mathsf{Na^{+}} \\ \mathsf{K} & \rightarrow & \mathsf{K^{+}} \end{array}$

Reactions of the Alkali Metals with Water

Lithium

Sodium Copyright © 2008 Pearson Prentice Hall, Inc.

Potassium

<u>Electron affinity</u> (EA): energy change associated with an electron being added to a neutral atom.

Li	EA = -60 kJ/mol
0	EA = -141 kJ/mol
F	EA = -328 kJ/mol