Chapter 8: Periodic properties of the elements

<u>Electron configuration</u>: shows which orbitals are occupied in an atom, and how many electrons they contain

<u>Ground state</u>: lowest energy, most stable state for an atom - has all electrons in the lowest energy possible orbitals

The energy of an electron in an H atom depends only on the principal quantum number, n, so in its ground state, the electron in an H atom occupies a ____ orbital.

Electron configuration:

<u>Orbital diagram</u>: figure that organizes electrons into their orbitals. Orbital = box, electron = arrow in box

H: ___

<u>Electron spin</u>: direction of an electron's inherent angular momentum - this creates a magnetic field around the electron that either points **up** or **down**.

Spin quantum number, *m*_s, defines electron spin

- $m_s = +\frac{1}{2}$: up spin
- $m_s = -\frac{1}{2}$: down spin

Multi-electron atoms

The first 3 quantum numbers define an orbital

All 4 quantum numbers define one electron in an atom

n: size of orbital

ℓ: shape of orbital

 m_{ℓ} : orientation of orbital

 m_s : spin of electron in that orbital

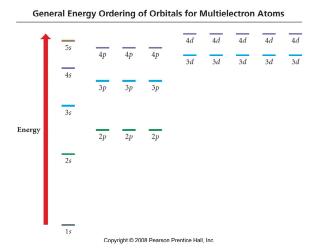
<u>Pauli exclusion principle</u>: no two electrons in an atom can have the same four quantum numbers

This means each orbital can hold no more than ____ electrons

He, 2 electrons, ground state electron configuration:

Orbital diagram:

Be, 4 electrons, configuration:


Orbital diagram:

Energy of electrons in multi-electron atoms

In hydrogen, *n* is the only quantum number necessary to calculate the energy of an orbital

In multi-electron atoms, both n and ℓ influence the energy of an orbital

Energies of ℓ : (lowest) $\mathbf{s} < \mathbf{p} < \mathbf{d} < \mathbf{f}$ (highest)

B (5 electrons) - configuration:

Orbital diagram:

Also, since energies get closer together as *n* increases, a **4s** orbital is lower in energy than a **3d** orbital

Н	
Не	
Li	
Be	
В	
С	
N	
0	

Electron configurations

Ne

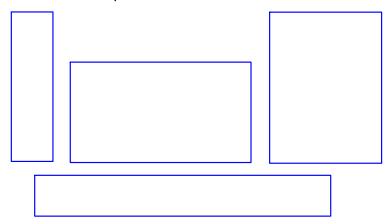
<u>Hund's rule</u>: Electrons fill orbitals with equal energy singly first with parallel spins.

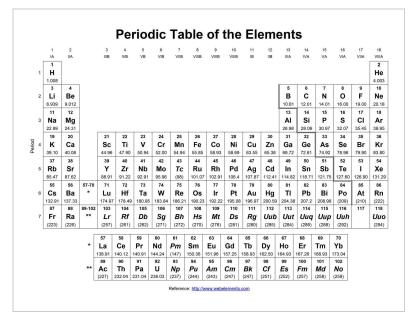
<u>Inner electrons</u>: A full noble gas electron configuration inside an atom - represented with noble gas symbol in brackets to make <u>abbreviated electron configuration</u>.

Periodic table and valence electrons

Outer Electron Configurations of Elements 1-18

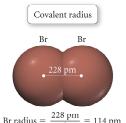
1A							8A
1 H							2 He
$\frac{\mathbf{H}}{1s^1}$	2A	3A	4A	5A	6A	7A	He 1s ²
3	4	5	6	7	8	9	10
Li 2 <i>s</i> ¹	Be 2 <i>s</i> ²	$2s^22p^1$	$\frac{\mathbf{C}}{2s^22p^2}$	$ \begin{array}{c c} \mathbf{N} \\ 2s^2 2p^3 \end{array} $	$2s^22p^4$	$ \begin{array}{c} \mathbf{F} \\ 2s^2 2p^5 \end{array} $	$ \begin{array}{c} \mathbf{Ne} \\ 2s^2 2p^6 \end{array} $
11 Na 3 <i>s</i> ¹	12 Mg 3s ²	$ \begin{array}{c c} 13 \\ A1 \\ 3s^23p^1 \end{array} $	14 Si 3s ² 3p ²	15 P 3s ² 3p ³	16 S 3s ² 3p ⁴	17 Cl 3s ² 3p ⁵	18 Ar 3s ² 3p ⁶

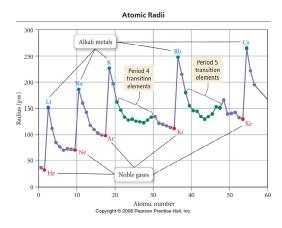

Copyright © 2008 Pearson Prentice Hall, Inc.

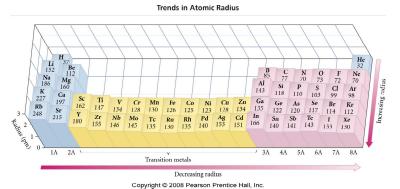

<u>Valence electrons</u>: number of electrons in outermost principal energy level (*n*) (plus outermost d electrons for transition elements)

Core electrons: inner electrons plus filled d or f sublevels

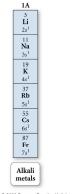
Periodic table and filling order

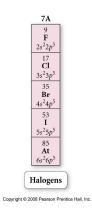

The *reason* the periodic table has its shape is because of the orbitals occupied in those elements.


Electron configurations	Electron configurations and magnetic properties
Ca:	4s has lower energy than 3d, but they are still close.
Sc:	Mn:
Sometimes, electron configurations are rearranged into	Zn:
order of increasing n (to group valence electrons better)	Cr:
Se:	Cu:
Abbreviated configurations: Po:	(You should be aware of the conditions behind these anomalies and be able to explain it if it occurs elsewhere, but do not memorize every exception on the periodic table!)
Bh:	Magnetic properties Unpaired electrons in the orbital diagram will make the element paramagnetic (weakly attracted to magnetic field)
	If all electrons are paired, the element is <u>diamagnetic</u> (not attracted by magnetic field)


Periodic trends in atomic radius

Atomic radius increases going down a column:


Atomic radius decreases going across a period (row):



Ions

Main group ions:

Transition metal ions:

70.[40] 2410 462				
Zn: [Ar] 3d ¹⁰ 4s ²				

Experimentally, the Zn²⁺ ion is diamagnetic:

7n2+.
Zn=":

Transition metals tend to lose the ____ electrons **before** the electrons!

(Writing the configuration in order of increasing nmakes ion formation easier!)

Ag+:

Ionic radius

Na: [Ne] 3s¹

Na⁺: [Ne]

Cl: [Ne] 3s²3p⁵ Cl⁻: [Ne] 3s²3p⁶

Ionization energy

Ionization energy (IE): energy required to remove 1 electron from an atom or ion

Na
$$\rightarrow$$

$$IE_1 = 496 \text{ kJ/mol}$$

$$Na^+ \rightarrow$$

$$IE_2 = 4560 \text{ kJ/mol}$$

Trends in first ionization energy (IE₁):

$$Mg \rightarrow$$

$$IE_1 = 738 \text{ kJ/mol}$$

(additional protons across a period will increase attraction to the electrons)

$$K \rightarrow$$

$$IE_2 = 419 \text{ kJ/mol}$$

(an additional shell shields the valence electrons from the nuclear attraction)

Ionization energy and Electron affinity

$$2 \operatorname{Li}(s) + 2 \operatorname{H}_2\operatorname{O}(I) \rightarrow 2 \operatorname{LiOH}(aq) + \operatorname{H}_2(g)$$

 $Li \rightarrow Li^{+}$

 $Na \rightarrow Na^{+}$

 $K \rightarrow K^{+}$

Reactions of the Alkali Metals with Water

Lithium

Sodium

Copyright © 2008 Pearson Prentice Hall, Inc.

Potassium

<u>Electron affinity</u> (EA): energy change associated with an electron being added to a neutral atom.

Li

EA = -60 kJ/mol

0

EA = -141 kJ/mol

F

EA = -328 kJ/mol