Chapter 14: Acids and Bases

Properties of Acids

Sour taste React with some metals Turns blue litmus paper red React with bases

Some Common Acids

HCl, hydrochloric acid H₂SO₄, sulfuric acid HNO₃, nitric acid HC₂H₃O₂, acetic acid (common name)

What is the IUPAC name of this carboxylic acid?

Properties of Bases

Taste bitter Solutions feel slippery Turns red litmus paper blue React with acids

Some Common Bases

NaOH, sodium hydroxide KOH, potassium hydroxide NaHCO₃, sodium bicarbonate

Arrhenius Acid-Base Theory

Arrhenius Acid - a hydrogen containing compound that ionizes to produce hydrogen ions (H⁺) when dissolved in water

Because **molecular acids are not made of ions**, they cannot dissociate.

> They must be pulled apart, or **ionized**, by the water.

 $\mathsf{HCl}_{(aq)} \rightarrow \mathsf{H}^+_{(aq)} + \mathsf{Cl}^-_{(aq)}$

Arrhenius Acids and Bases

Hydrogen ions released from acids do not float about freely in solution. Instead, they attach to water molecules to form

HYDRONIUM IONS

$$H^{+} + : \bigcup_{i=1}^{H} \longrightarrow \begin{bmatrix} H \\ H : \bigcup_{i=1}^{H} \end{bmatrix}^{+} = H_{3}O^{+}$$

In the formula for an acid, the hydrogen atom that ionizes is many times written first - ex. HC₂H₃O₂ This hydrogen atom is the one that ionizes These hydrogen atoms do not ionize in water

Arrhenius Base - a hydroxide containing compound that dissociates to produce OH⁻ when dissolved in water

Bases that contain OH⁻ are ionic compounds.

Ionic substances **dissociate** in water.

 $NaOH(aq) \rightarrow Na^{+}(aq) + OH^{-}(aq)$

Arrhenius Acid–Base Reactions

The H^+ from the acid combines with the OH^- from the base to make a molecule of H_2O

 $\frac{\mathsf{HCl}(aq) + \mathsf{NaOH}(aq) \rightarrow \mathsf{NaCl}(aq) + \mathsf{H}_2\mathsf{O}(l)}{(\mathsf{acid} + \mathsf{base} \rightarrow \mathsf{salt} + \mathsf{water})}$

The cation from the base combines with the anion from the acid to make a salt (an exchange reaction)

Bronsted-Lowry Acid-Base Theory

Although widely used, the Arrhenius acid-base theory

has limitations. (For example, some compounds act as bases even though they do not contain OH⁻).

 Bronsted-Lowry theory broader definition than Arrhenius theory

Bronsted-Lowry Acid - any substance that can donate a proton (H+)

Bronsted-Lowry Base - any substance that can accept a H⁺

A Brønsted-Lowry acid–base reaction is any reaction in which an H⁺ is transferred.

The acid molecule donates an H⁺ to the base molecule:

 $H-A + :B \longrightarrow :A^{-} + H-B^{+}$ Base structure must contain an atom with an unshared pair of electrons place in aqueous solution. to bond to H⁺.

Bronsted-Lowry Acid-Base reactions don't have to take

Examples:

Conjugate Acid-Base Pairs

Identify the Bronsted-Lowry acid and base in the following reactions:

 $NH_{3(aq)} + H_{2}O_{(l)} \longrightarrow NH_{4}^{+}(aq) + OH^{-}(aq)$ $HCO_{3}^{-}(aq) + H_{2}O_{(l)} \longrightarrow CO_{3}^{2-}(aq) + H_{3}O^{+}(aq)$

Conjugate Acids and Bases

A conjugate acid-base pair is *two species that differ from each other by one proton*

of Acids and Bases" (we already discussed part of this in Ch.7) or Section 14.6 "Acid-Base Titration" Note: Water is an amphoteric molecule it can function as an acid or a base

Strong and Weak Acids and Bases

A **strong acid** is an acid that <u>transfers 100%</u> (or nearly 100%) of its acidic hydrogens to water

HCl + H₂O
$$\rightarrow$$
 H₃O⁺ + Cl⁻
 f
Hydrochloric acid: a strong acid
Common Strong Acids
HCl, HBr, HI, HNO₃, H₂SO₄, HClO₄

A **weak acid** is an acid that <u>transfers only a small amount</u> of its acidic hydrogens to water

 $HC_2H_3O_2 + H_2O$ $H_{3}O^{+} + C_{2}H_{3}O_{2}^{-}$ When acetic acid is Acetic acid: a weak acid dissolved in water only 0.42% of its acidic protons **Common Weak Acids** are transferred to H₂O. HC₂H₃O₂, HF, H₂CO₃, H₃PO₄, H₂SO₃ 99.58% of the molecules remain un-ionized. **Bases** can also be **strong** or *weak* Only small amount **Common Strong Bases** 100% dissociation of dissociation LiOH, NaOH, KOH, Ca $(OH)_2$ Common Weak Bases $NaOH \rightarrow Na^+ + OH^-$ - NH₃, HCO₃⁻, CH₃NH₂ (ammonia, bicarbonate, methyl amine) **Dissociates 100%** When NH₃ reacts with H₂O only a small amount of OH⁻ $NH_3 + H_2O \implies$ $NH_4^+ + OH^$ produced

Self Ionization of Water

A VERY SMALL PERCENTAGE (about 1 out of every 10 million) of water molecules can dissociate into H₃O⁺ and OH⁻

 $H_2O \implies H^+ + OH^-$ (Arrhenius)

 $H_2O + H_2O \implies H_3O^+ + OH^-$ (Bronsted-Lowry)

All aqueous solutions contain both H₃O⁺ and OH⁻

At 25°C, there are equal numbers of hydronium and hydroxide ions:

$$[H_3O^+] = [OH^-] = 1 \times 10^{-7}M$$

at 25 °C in pure water

Note: [brackets] mean molar concentration in H₂O

$[H_3O^+] \times [OH^-] = Ion Product for Water (K_w)$

$[H_3O^+] \times [OH^-] = 1 \times 10^{-14} M$

The product of the H_3O^+ and OH^- concentrations is constant: **1 x 10**⁻¹⁴ M

If H₃O⁺ ions are added to water, there will be a decrease in [OH⁻]

If OH⁻ ions are added to water, there will be a decrease in [H₃O⁺]

Sufficient acid is added so that the $[H_3O^+]$ is now 6.52 x 10⁻⁴ M. What the $[OH^-]$ reaches 5.41 x 10⁻⁶M. is the [OH⁻] in this solution?

Sufficient base is added so that What is the new $[H_3O^+]$?

The pH Scale

Basic Solutions: [H₃O⁺] < [OH[−]]

Neutral Solutions: [H₃O⁺] = [OH[−]]

A <u>strongly acidic</u> solution has a relatively high concentration of ______. A <u>strongly basic</u> solution has a relatively high concentration of ______.

The **pH scale** is a 0-14 scale which measures the acidity or basicity of solution.

The pH scale was derived because very small concentrations (such as 4.22 x 10⁻¹¹ M and 3.12 x 10⁻¹²M) are difficult to compare.

 $pH = -log [H_3O^+]$

pH = 2.0 means $[H_3O^+] = 1 \times 10^{-2} M$

 $pH = 3.0 \text{ means} [H_3O^+] = 1 \times 10^{-3} M$

If $[H_3O^+] = 1 \times 10^{-9} M$, then pH = _____

The pH of a solution is the **<u>negative logarithm</u>** of the hydronium ion concentration

Which is **more acidic**, pH = 2.0 or pH = 3.0?

pH Calculations

The *lower the pH*, the more acidic the solution; the *higher the pH*, the more basic the solution.

I pH unit corresponds to a factor of 10 difference in acidity.

```
Normal range is 0 to 14
pH 0 then [H<sup>+</sup>] = 1 M, pH 14 then [OH<sup>-</sup>] = 1 M; but pH can be
negative (very acidic) or larger than 14 (very alkaline)
```

If $[H_3O^+] = 1 \times 10^{-6} M$, then pH = -log $10^{-6} =$ If $[H_3O^+] = 1.0 \times 10^{-12} M$, pH = ______ acidic or basic? If $[H_3O^+] = 3.6 \times 10^{-12} M$, pH = _____ acidic or basic?

Text calculator: (-) LOG 3.6 E (-) 12 =

Numerical calculator: 3.6 E 12 +/- LOG +/-

(in pH values, the sig figs are after the decimal point)

pH and H₃O⁺ Calculations

Calculate the pH of the following solutions:

a)
$$[H_3O^+] = 5.9 \times 10^{-10}$$
 b) $[H_3O^+] = 2.5 \times 10^{-3}$ c) $[H_3O^+] = 6.32 \times 10^{-6}$

Conversions between pH and [H₃0⁺]

If pH = 8.0, $[H_3O^+] = 1 \times 10^{-8} M$

[H₃O⁺] = 10^{-pH}

If pH = 2.87,
$$[H_3O^+] = 10^{-2.87} =$$
_

text calculator: 10^{\times} (-) 2.87 = numerical calculator: 2.87 ⁺/- 10^{\times}

If pH = 6.43, $[H_3O^+] = 10^{-1} = -$

(Use MODE or SCI if your calculator gives you 0.00000...)

Calculate the $[H_30^+]$ of the following solutions:

a) pH = 8.92 b) pH = 2.664

[OH⁻] and pOH Calculations

If $[OH^{-}] = 1 \times 10^{-4} M$, pOH = 4

pOH = -log [OH⁻]

[OH⁻] = 10^{-pOH}

pOH and pH are related

Calculate the pH of the following solutions:

a) $[OH^{-}] = 1.0 \times 10^{-5}$ b) $[OH^{-}] = 6.7 \times 10^{-8}$ c) $[OH^{-}] = 6.32 \times 10^{-6}$

These equations will be given on the final exam: $pH = -log [H_3O^+]$ $[H_3O^+] = 10^{-pH}$ pH + pOH = 14 $pOH = -log [OH^-]$ $[OH^-] = 10^{-pOH}$ We will not cover Sections 14. 10 "Buffers" or 14.11 "Acid Rain" (this material will not be on the final exam)

Substance	pН
gastric (human stomach) acid	1.0-3.0
limes	1.8 - 2.0
lemons	2.2-2.4
soft drinks	2.0-4.0
plums	2.8 - 3.0
wine	2.8-3.8
apples	2.9-3.3
peaches	3.4-3.6
cherries	3.2-4.0
beer	4.0 - 5.0
rainwater (unpolluted)	5.6
human blood	7.3-7.4
egg whites	7.6-8.0
milk of magnesia	10.5
household ammonia	10.5-11.5
4% NaOH solution	14