Chapter 2: Measurement and Problem Solving

Scientific Notation

- Large and small numbers can be difficult to use. For example:

The mass of one iron atom is:

0.0000000000000000000000911 g

The number of water molecules in one cup is:
7,910,000,000,000,000 000,000,000 molecules

Scientific notation is a system in which an ordinary decimal number is expressed as a product of a number between 1 and 9 multiplied by 10 raised to a power.

In scientific notation:
Mass of an iron atom $=9.11 \times 10^{-23} \mathrm{~g}$
\# of water molecules in one cup $=7.91 \times 10^{24}$
molecules

Writing numbers in scientific notation

Express the following numbers in scientific notation:
a) $16,020,000 \mathrm{mg}$
b) 0.00001206 m
c) 24 km

Express the following numbers in decimal notation:
a) 4.38×10^{4}
b) 8.770×10^{-15}
c) 6.23×10^{8}

Significant figures

- A method for handling uncertainty in measurement
-Two kinds of numbers are associated with physical quantities:

Exact numbers and

Measured numbers

Exact numbers - we know the exact value - no approximation involved

Measured numbers - we can never know the exact value

Exact number examples:
1 dozen eggs = 12 eggs exactly
A square has 4 sides (not 3.7 or 4.1)

- All measured numbers carry with them a degree of uncertainty. The degree of uncertainty depends on the measuring device used.

Precision

\longrightarrow Thermometer A marked off in 1 degree increments - can estimate temp as

$$
29.2^{\circ} \mathrm{C} \text { or } 29.3^{\circ} \mathrm{C}
$$

\longrightarrow Thermometer B divided into 0.1 degree increments - the temp can be estimated as $29.18^{\circ} \mathrm{C}$ or $29.19^{\circ} \mathrm{C}$
(Thermometer B is more precise)

Significant Figures are the digits in any measurement that are known with certainty plus one digit that is uncertain.

Significant Figures

Guidelines for Determining the Number of Significant Figures

1. All nonzero digits are significant 45.1 49
1.279
2. Confined zeros (or zeros between nonzero digits) ALWAYS count as significant 2.075
70.7
940005.008
3. Trailing zeros are significant if there is a decimal point in the number

62.00
78.00012000
0.02000

4. Leading zeros (zeros to the left of the first nonzero number) are NOT significant. These zeros merely "place" the decimal point.
0.0145
0.00034
0.000002279
5. In cases where there is no decimal point, assume trailing zeros are NOT significant. (These types of numbers should be avoidedby using scientific notation).

$$
\begin{aligned}
& 93,000,000 \\
& 60 \\
& 4000 \\
& 6310
\end{aligned}
$$

How many significant figures are in the following numbers?

426
406.00
4600
515.0
20
200
200.00
907,000,000
6.022×10^{23}

0.0126
0.0100
1.01001
0.01001
4.008
40.008
100.2900
0.0000003007
4.680×10^{-5}

Calculations with Significant Figures

Rounding off is the process of deleting insignificant digits from a calculated number.
\longrightarrow If the digit to be dropped is less than 5, that digit and all digits that follow it are simply dropped
62.314 rounded to 3 sf becomes 62.3
504.902 rounded to 4 sf becomes 9,017.000427 rounded to $8 \mathrm{sf}=$
\qquad
\longrightarrow If the digit to be dropped is 5 or greater, the last retained digit is increased by one
62.782 rounded to 2 sf becomes 63
726.679 rounded to 5 sf becomes
4.056639×10^{17} rounded to $4 \mathrm{sf}=$

Calculated quantities cannot be any more precise than the least precise piece of information that goes into the calculations

Calculations with Significant Figures

- Multiplying and Dividing: There can be no more total sig. figs. in the answer than there are in the quantity having the fewest sig. figs.
- Adding and Subtracting: There can be no more decimal places in the answer than in the quantity with the least number of decimal places.

$65.6 \times 0.0024=$

$983.24 \mathrm{~g}=$
$1270 \mathrm{~cm}^{3}$
46.014 g
1.578 cm

- 27.8 g
$+1.4762 \mathrm{~cm}$
1.52 cm

Calculations involving multiplication/division and addition/subtraction:
$(1.023 \times 0.895)+0.16=$

$$
(4.1792-4.024) \times 57.884=
$$

Metric and SI Units

- The metric system is much easier to use than English system. There are fewer units to learn and it is much easier to interconvert in the metric system
- System used for scientific measurements (based on metric system) is called the SI System (System International). The SI System is used throughout the world.

TABLE 2.1	Important SI Standard	
Units		
Quantity	Unit	Symbol
length	meter	m
mass	kilogram	kg
time	second	s
temperature	kelvin	K

tABLE 2.2 SI Prefix Multipliers

Prefix	Symbol	Multiplier	
tera-	T	$1,000,000,000,000$	$\left(10^{12}\right)$
giga-	G	$1,000,000,000$	$\left(10^{9}\right)$
mega-	M	$1,000,000$	$\left(10^{6}\right)$
kilo-	k	1,000	$\left(10^{3}\right)$
deci-	d	0.1	$\left(10^{-1}\right)$
centi-	c	0.01	$\left(10^{-2}\right)$
milli-	m	0.001	$\left(10^{-3}\right)$
micro-	μ	0.000001	$\left(10^{-6}\right)$
nano-	n	0.000000001	$\left(10^{-9}\right)$
pico-	p	0.000000000001	$\left(10^{-12}\right)$
femto-	f	0.000000000000001	$\left(10^{-15}\right)$

Ex: kilo means a thousand so:

$$
\begin{aligned}
& 1 \text { kilometer }=1000 \text { meters } \\
& 1 \text { kilogram }=1000 \text { grams } \\
& 1 \text { kiloliter }=1000 \text { liters }
\end{aligned}
$$

5.62 Gm (gigameters) $=5.62 \times 10^{9}$ meters
(5620000000 meters)
12.5 ml (milliliters) $=12.5 \times 10^{-3}$ liters
(1.25×10^{-2} liters in scientific notation)
$5 \mu \mathrm{~s}$ (microseconds) $=5 \times 10^{-6}$ seconds (0.000005 seconds)

3.9 hg (nanograms) $=$

\qquad g

Units of Volume

Volume is a measure of the amount of space occupied by on object. Volume is 3 -dimensional so the units are $\mathrm{ft}^{3}, \mathrm{~cm}^{3}, \mathrm{in}^{3}$... etc.

Liter is also a volume unit

A liter is the basic unit of measurement in the metric system. A liter is a volume equal to a perfect cube that is 10 cm on each side.

$$
\begin{aligned}
& 1 \mathrm{~L}=10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm} \\
& \uparrow=1000 \mathrm{~cm}^{3} \\
& \text { (symbol for Liter is capital "L") }
\end{aligned}
$$

Converting from One Unit to Another

We often need to convert from one unit to another: inches \longrightarrow feet
lbs $\longrightarrow \mathrm{kg}$
miles $\longrightarrow \mathrm{km}$
To do this, use Conversion Factors!

- Conversion factors are derived from equal quantities of two different units

Ex. 1 foot $=12$ inches conversion factors:
$\frac{1 \text { foot }}{12 \text { inches }} \frac{12 \text { inches }}{1 \text { foot }}$

How many inches are in 2.30 feet?
?? inches $=2.30 \mathrm{ft} \times \underline{12 \text { in (choose conversion }}$ 1 ft factor that allows cancellation of $=27.6$ inches unwanted unit)

Metric-to-Metric Conversion Factors
You will need to know the metric conversions in Table 2.2 that are enclosed in the box.

Ex. 0.01 meters $=1 \mathrm{~cm}$ or $100 \mathrm{~cm}=1$ meter
Conversion factors:
$\frac{0.01 \mathrm{~m}}{1 \mathrm{~cm}}$ or $\frac{1 \mathrm{~cm}}{0.01 \mathrm{~m}} \quad \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}$ or $\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}$

English-to-English and Metric-to -English conversion factors will be provided on the Constants and Conversion Sheet.

- How many meters are in $9.87 \times 10^{-3} \mathrm{~km}$?
-How many inches are in 0.13 miles?
- A trip takes 2.5 days. How many seconds did the trip take?
- A certain species of snail can travel 14.0 feet in 1.00 day. How many kilometers can the snail travel in 1.00 year?
- The tallest person in the NBA is7 7 ft 7 in . what is his height in cm and m ?
- How many cans of Diet Coke would you have to drink to consume 1.00 gallon?
(1 can Diet Coke $=12.0$ fluid ounces)
-To get a daily dose of the antibiotic tetracycline a patient needs 25.0 mg per kg of body weight. How many mg of tetracycline should a 154 lb patient take daily?
- A car travels at 50.0 miles per hour. How fast is this in meters per second?
- A bedroom has a volume of $135 \mathrm{~m}^{3}$. What is this volume in km^{3} ?

Density

- Density is the ratio of the mass of an object to the volume occupied by that object

$$
\text { Density }=\frac{\text { mass }}{\text { volume }}
$$

Most frequently encountered units are:
Solids $\mathrm{g} / \mathrm{cm}^{3}$
Liquids g / mL
Gases g/L

> Rounded to 2 sig. figs the density of water at room temp $=1.0 \mathrm{~g} / \mathrm{mL}$

(You need to know this)

- A solid $75.0 \mathrm{~cm}^{3}$ block of table salt has a mass of 163 g . What is its density?
-The density of solid gold is $19.3 \mathrm{~g} / \mathrm{cm}^{3}$ (19.3 g = $1 \mathrm{~cm}^{3}$ of gold)

Density can be used as a conversion factor:
$\frac{19.3 \mathrm{~g}}{1 \mathrm{~cm}^{3}}$ or $\frac{1 \mathrm{~cm}^{3}}{19.3 \mathrm{~g}}$

- What is the mass of $25.6 \mathrm{~cm}^{3}$ of gold?
- What is the volume(in cm^{3}) of 342 g of gold?
- The density of ethyl alcohol is $0.790 \mathrm{~g} / \mathrm{mL}$. What is the mass of 875 mL of ethyl alcohol?

