# Chapter 3: Matter and Energy

# Chemistry - the study of matter

Matter is anything that has mass and occupies space

# Matter Solid Liquid Gas Image: Constraint of the second of the second

# **Physical States of Matter**

Matter can exist in all three states

- → The state of matter observed for a substance is dependent on the temp. and pressure
  - Oxygen and nitrogen can be liquids
  - Iron can be vaporized

**Elements and Compounds** 

Pure substance: a form of matter composed of a <u>single</u> chemical - either an <u>element</u> or a <u>compound</u>.

# Element - a pure substance composed of just one type of atom.

• Elements CAN NOT be broken down into simpler substances by ordinary chemical means.

Compounds - a pure substance composed of *more than one type of atom* with the **atoms present in fixed ratios.** 

Ex. In all samples of pure water there are2 hydrogen atoms for every oxygen atom:H<sub>2</sub>O



A compound **CAN** be broken down into 2 or more simpler substances by chemical means.

Ex. Electrolysis of Water 2 H<sub>2</sub>O  $\longrightarrow$  2 H<sub>2</sub> + O<sub>2</sub>

#### **Pure Substances and Mixtures**



A pure substance always has a *definite* and *constant composition*.

A MIXTURE is a physical combination of 2 or more substances. The composition of a mixture can vary from sample to sample and its components can be separated by physical means.

#### Types of Mixtures

#### <u>Heterogeneous</u>

Contains visibly different parts or phases, each of which has different properties.

#### Homogeneous

Contains only one physically distinct phase which has uniform properties throughout - a **SOLUTION** 

Classify the following as a pure substance or a homogeneous or heterogeneous mixture

a) a cup of coffee b) 24 carat gold bar c) green paint

d) chocolate chip cookie e) Kool Aid f) mercury

### **Physical and Chemical Properties and Changes**

We recognize various chemicals by:

- a) odor and color
- b) density
- c) boiling point and melting point
- d) how they react with other chemicals, etc..

Physical Properties can be observed without changing a substance into another substance

Chemical Properties are properties that matter exhibits as it undergoes changes in chemical composition

A chemical property of iron is that it reacts with oxygen to form iron(III) oxide - RUST!

 $2 \text{ Fe} + 3 \text{ O}_2 \longrightarrow 2 \text{ Fe}_2 \text{ O}_3$ 

The failure of a substance to react is also considered a chemical property:  $CCl_4 + O_2 \longrightarrow NO RXN$  (does not burn)

Physical change is a process that does NOT alter the basic nature (chemical composition) of a substance but only changes the form or appearance of the

substance. (A new substance is not formed, only its state has changed).

# **Types of Physical Changes**

• Phase changes are physical changes (between solid, liquid, and gas)

Solid ice ←→ Liquid Water ←→ Gaseous Water (Water Vapor or Steam)

- Changes in size and shape are physical changes
   *ie* pulverizing an aspirin
   tearing paper into smaller pieces
- Dissolving one substance into another is a physical change
- Filtration, distillation, and other methods of separating mixtures into pure substances are physical changes.



#### **<u>Chemical change</u>**: • A new type of matter is formed



(butane)

 $C_4H_{10} + O_2 \longrightarrow CO_2 + H_2O$ 

• A new chemical formula is written

• Also known as a chemical reaction

<u>**Clues</u>** that a chemical change has occurred (all of these are evidence that a new substance has formed)</u>

- Color change
- Odor, gas evolved (but not just from boiling)
- Flame, burning
- Temperature change on its own

<u>A Chemical equation</u> represents a chemical reaction

Reactant(s) <br/>
chemical > Product(s) <br/>
reaction >

Classify these as physical or chemical changes:

- a) Water evaporating
- b) Smoking a cigarette
- c) Dissolving salt in water
- d) Crushing a piece of charcoal
- e) Gasoline being used in your car engine
- f) Boiling an egg (cooking it)
- g) Boiling water

In any chemical reaction mass is neither created nor destroyed.

# OR

The products of a chemical reaction have the same total mass as the reactants

# **ENERGY**

Behavior of matter is driven by energy, so understanding energy is critical in the study of chemistry

Law of the Conservation of Energy

Energy can not be created nor destroyed

• However, we can transfer energy from one place to another and we can change its form



Hydroelectric Dam

<u>Types of Energy</u> Kinetic Energy: energy of motion (translational,rotational,vibrational)

Potential Energy: stored energy an object possesses due to its *position* or *chemical composition* 

<u>Common forms of energy</u> heat, light, electrical, mechanical and **chemical energy** 

#### Energy

 In most chemical reactions the chemical potential energy of the products is LOWER than

<u>Common Energy Units</u> <u>SI Unit = Joule (J)</u> <u>c</u>alorie (cal)= amt of energy required to raise one gram of water by 1°C <u>C</u>alorie (food calorie) = 1000 cal <u>1 cal = 4.184 J</u>

that of the reactants



If heat energy is absorbed during a chemical change the reaction is said to be **ENDOTHERMIC** 

Q: If energy is released during an exothermic chemical reaction, don't we lose energy?

A: In an exothermic chemical reaction the energy released was *originally* stored as potential energy in the chemical bonds of the reactants. Consequently, during that reaction the **total energy** <u>does not change</u> but a transformation between forms of energy occurs - the stored potential energy is converted to heat (or other forms of energy).

#### Temperature

Temperature is a measure of atomic or molecular motion - as temp increases, molecular motion\_\_\_\_\_\_ - as temp decreases, molecular motion\_\_\_\_\_\_

#### **Temperature Scales**

Fahrenheit scale (°F) - used in the U.S. Celcius scale (°C)- used in the rest of the world and in science Kelvin scale (K) - SI Unit; used in scientific

calculations

- the absolute scale ("Absolute zero")



Temperature Conversions

K = °C + 273.15 °F = 
$$\frac{9}{5}$$
 °C + 32 or °C =  $\frac{5}{9}$  (°F - 32)

47.0 °C = ? K