Chapter 5: Molecules and Compounds

Compounds - a pure substance composed of more than one type of _____ where the _____ combine chemically in *fixed,* definite proportions.

Contrast a compound to a mixture where elements can have ANY proportion.

Law of Constant Composition (Proust) - ratio of elements in a compound is <u>always the same</u> if the compound is pure.

Ex. Two samples of pure carbon dioxide gas were broken down into their constituent elements - carbon and oxygen - and the masses of each element were measured.

> Sample 1 = 4.8 g O, 1.8 g C Sample 2 = 17.1 g O, 6.4 g

Are these results consistent with the Law of Constant Composition?

Chemical Formulas

Chemical Formulas: describe compounds by showing the number and type of each element in the <u>simplest unit of the compound.</u>

Formulas use <u>element symbols</u> and <u>subscripts to</u> <u>the right</u> of the element symbol to describe the number of atoms of each element in the compound.

ymbol for carbon and implied subscript of "1"

Ex.

 symbol for oxygen and subscript showing 2 oxygen atoms

 CO_2

Carbon dioxide

CO₂ ←

 C_3H_8 - propane

Order of writing elements in a formula:

- 1. Metals before nonmetals (You need to know this.)
- 2. Nonmetals written in order shown below

C P N H S I Br Cl O F

(You DON"T need to memorize this, but be able to use it to write formula)

• Give the formula of acetone, a molecule composed of six hydrogen atoms, three carbon atoms, and one oxygen atom.

Formulas with Polyatomic Ions

Polyatomic ions: groups of atoms that act as a unit.

Need to write these in chemical formulas in a way to indicate that the unit is kept together

$$Ex.$$

$$Ca(C_2H_3O_2)_2 \leftarrow Subscript indicates two C_2H_3O_2 units$$
Calcium acetate
$$K_2SO_4$$
Implied "1" subscript on calcium
$$SO_4 \text{ is symbol of sulfate polyatomic ion}$$

$$No \text{ parentheses for one polyatomic ion}$$

$$Mg_3(PO_4)_2.$$

Classifying Elements and Compounds

Atomic Elements: Elements whose particles are SINGLE ATOMS.

Most elements are atomic elements - Fe, C, Au, B, etc.

Molecular Elements : Elements whose particles are DIATOMIC MOLECULES

(molecule has 2 atoms of the same element)

Only a handful of these elements (7). They are:

$H_2 \quad N_2 \quad O_2 \quad Cl_2 \quad Br_2 \quad l_2 \quad F_2$

You need to know these

Classifying Compounds

Molecular Compounds: Compounds whose particles are molecules made of <u>two or more</u> NONMETALS.

 \succ Examples: H₂O, CS₂, C₃H₆O₂, NH₃, PCl₃

Ionic Compounds: Compounds whose particles are <u>CATIONS</u> (made from metals) and <u>ANIONS</u> (made from 1 or more nonmetals).

- No molecules, instead have <u>formula units</u>
- Have 3-D lattice of cations and anions held together by + & - attractive forces
- ➢ Ex. NaCl, CaO, NiBr₂, K₃PO₄

NaCl

Classifying Elements and Compounds

Classify the following as ether an atomic element, molecular element, molecular compound or ionic compound.

- O₂
- CO
- Na₂O
- Co
- N_2H_4
- FeCl₃

Review: Main Group Cation and Anion Charges

Recall from Chapter 4:

	<u>Examples</u>
Group IA metals form +1 cations	Na+, Li+
Group IIA metals form +2 cations	Ca ²⁺ ,
Group IIIA metals form cations	
Group VIIA nonmetals form -1 anions	F ⁻ ,
Group VIA nonmetals form anions	/
Group VA nonmetals form anions	/

To form K⁺, neutral K needs to lose/gain 1 electron To form P³⁻, neutral P needs to gain _____ electrons

	1	2		3	A	5	6	7	8	0	10	11	12	13	14	15	16	17	18
	IA	IIA		IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1																		2
1	Ĥ																		Ho
	1 008																		4 001
	3	4	1											5	6	7	8	9	10
2	Li	Be												B	C	N	Ő	F	Ne
	6.939	9.012												10.81	12.01	14.01	16.00	19.00	20.18
5	11	12												13	14	15	16	17	18
3	Na	Ma												AI	Si	P	S	CI	Ar
	22.99	24.31												26.98	28.09	30.97	32.07	35.45	39.95
6	19	20	1	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	ĸ	Са		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08		44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.61	74.92	78.96	79.90	83.80
	37	38	1	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Aq	Cd	In	Sn	Sb	Те	I	Xe
	85.47	87.62		88.91	91.22	92.91	95.96	(98)	101.07	102.91	106.4	107.87	112.41	114.82	118.71	1 121.75	127.60	126.90	131.2
8	55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ва	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hq	TI	Pb	Bi	Po	At	Rn
	132.91	137.33		174.97	178.49	180.9	5 183.84	186.21	190.23	192.22	195.08	3 196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
	87	88	89-102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh		Uud
	(223)	(226)		(257)	(261)	(262)	(271)	(272)	(270)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(292)		(294
			Г	57	58	50	60	61	62	63	64	65	66	67	68	60	70		
			*	la	Co	Dr	Nd	Dm	Sm	Fu	Gd	Th	Dv	Ho	Er	Tm	Vh		
			5	138.91	140 12	140.91	144 24	(147)	150.36	151.96	157 25	158.93	162 50	164.93	167.26	168.93	173.04		
			F	89	90	91	92	93	94	95	96	97	98	99	100	101	102		
			**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
				(227)	232.04	231 04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)		

Writing Ionic Compound Formulas

 Formulas for ionic compounds should be NEUTRAL. Ratio in which cations (+) and anions (-) combine is such that the <u>charges</u> <u>cancel</u>.

	<u>cation</u>	<u>anion</u>	charge cancellation	<u>formula</u>
Ex.	K+	S ²⁻	$2K^+$ and $1 S^{2-}$	K_2S
	Ba ²⁺	Cl⁻		

- The symbol for the positively charge cation is written first, followed by the anion.
- CHARGES ARE NOT SHOWN in final formula
- Subscripts give the combining ratio

Problems: (Hint: need to first determine cation and anion charges)

Write the formula of an ionic compound made from:

- a) Calcium (Ca) and bromine (Br)
- b) Lithium (Li) and nitrogen (N)
- c) Aluminum (Al) and oxygen (O)
- d) Magnesium (Mg) and sulfur (S)

Type I & II Ionic Compounds

Two types of Ionic Compounds: Type I and Type II

Type I - Metal forms only ONE TYPE of positive ion <u>Group IA - IIIA metals</u> are type I cations Name of cation is the same as the element

Ex. Mg²⁺ magnesium cation Na⁺ sodium cation

> TYPE II - Metal forms MORE THAN ONE TYPE of

positive ion <u>Most transition metals</u> are type II cations (exceptions: <u>Zn²⁺</u>, Cd²⁺, <u>Ag</u>⁺ - always these charges)

TABLE 5.4 Some Metals That Form Type II Ionic Compounds and Their Common Charges

Metal	Symbol Ion	Name
chromium	Cr ²⁺	chromium(II)
	Cr ³⁺	chromium(III)
iron	Fe ²⁺	iron(II)
	Fe ³⁺	iron(III)
cobalt	Co ²⁺	cobalt(II)
	Co ³⁺	cobalt(III)
copper	Cu ⁺	copper(I)
0.04.400.000	Cu ²⁺	copper(II)
tin	Sn ²⁺	tin(II)
	Sn ⁴⁺	tin(IV)
mercury	Hg_{2}^{2+}	mercury(I)
H19496000000	Hg^{2+}	mercury(II)
lead	Pb ²⁺	lead(II)
	Pb^{4+}	lead(IV)

Name of cation is the element name followed by charge of cation in parentheses

Ex. Fe³⁺ iron (III) cation Cu²⁺ copper (II) cation

Anion Nomenclature

Monoatomic ANION Names

Use element's root (base) name plus "ide"

VA		<u>VIA</u>	VIIA	
N ³⁻	nitride	O ²⁻ oxide	F-	fluoride
P ³⁻		S ²⁻	Cl⁻	
		Se ²⁻	Br⁻	
			l-	

Some Common Polyatomic Ions

Name	Formula	Name	Formula	
Acetate	$C_2H_3O_2^-$	Hypochlorite	HClO-	
Carbonate	CO3 ^{2–}	Chlorite	ClO ₂ -	
Hydrogencarbonate	HCO ₃ -	Chlorate	ClO ₃ -	
(aka bicarbonate)		Perchlorate	ClO ₄ -	
Hydroxide	OH-	Sulfate	SO4 ²⁻	
Nitrate	NO ₃ -	Sulfite	SO ₃ ^{2–}	
Nitrite	NO ₂ ⁻	Hydrogen sulfate	HSO ₄ -	
Chromate	CrO ₄ ^{2–}	(aka bisulfate)		
Dichromate	$Cr_2O_7^{2-}$	Hydrogen sulfite	HSO ₃ -	
Ammonium	NH ₄ +	(aka bisulfite)		
Cyanide	CN-	Phosphate	PO ₄ ³⁻	

You need to know the 10 polyatomic ions in **BLACK** by quiz #2

(Know Names, formulas and charges - See your syllabus for list there as well)

Naming Ionic Compounds

Name cation first followed by anion

(need to determine whether cation is type I or II to name correctly)

Determine the name of the following ionic compounds from their formulas:

Na ₂ O	FeCl ₃	•
CoCl ₂	Li ₂ SO ₄	_
CuCl	PbBr ₂	_
(NH ₄) ₃ PO ₄	SnF ₄	_
CaCO ₃	BaS	

Determine the formula for the following ionic compounds from their names:

copper (II) iodide	sodium cyanide
calcium nitride	zinc oxide
lead (II) sulfide	iron (III) nitrate
ammonium chloride	magnesium chlorate
Sodium hydroxide	Aluminum Phosphide

Naming Molecular Compounds

Molecular Compounds: contain only nonmetals and <u>have no ions</u>

Binary (2 element) molecular compounds are named from the formula using Greek prefixes to show quantity

N ₂ O:	<u>Gre</u>	<u>ek prefixes</u>				
N ₂ O ₄ :	(for	(for quantity)				
	1:	mono				
CO:	2:	di				
NO ₃ :	3:					
	4:					
CO ₂ .	5:					
S ₂ Cl ₂ :	6:					
Phosphorus trichloride						

Carbon tetrachloride

Disulfur monoxide

Naming Acids

Acid - a molecular compound that ionizes to form H^+ when dissolved in water (H^+ is the cation).

 $\begin{array}{rcl} HCl(g) & \longrightarrow & H^+_{(aq)} + & Cl^-_{(aq)} \\ & & H_2O \end{array}$

- To indicate an acid is dissolved in water
 (aq) is written after the formula i.e. HCl_(aq)
- Acid formulas are written so that the acidic hydrogens(s) is the first atom(s) listed in the formula.

Examples of compounds which are acids:

HNO ₃	HNO ₂	$HCIO_4$
H ₂ SO ₄	H_3PO_4	HCI
H_2CO_3	$HC_2H_3O_2$	HCN

Not all compounds with H atoms are acids: ex. CH₄, NH₃

Naming Acids

anion	acid
-ate →	-ic acid
-ite \rightarrow	-ous acid
-ide \rightarrow	hydroic acid

Give the acid name for the following compounds:

HBr hydrogen bromide
H ₂ CO ₃ hydrogen carbonate
H ₂ SO ₃ hydrogen sulfite
H ₂ S hydrogen sulfide
HNO ₃ hydrogen nitrate
HClO ₃ hydrogen chlorate
HF hydrogen fluoride
H₃PO₃ hydrogen phosphite

Formula Mass

- The mass of an individual molecule or formula unit (also known as molecular mass or molecular weight)
- To calculate formula mass add the masses of the atoms in a single molecule or formula unit
 - Ex. What is the formula mass of H_2O ?

2(1.008 amu) + 16.00 amu = 18.016 = 18.02 amu

Calculate the formula mass of $Al_2(SO_4)_3$