Chapter 5: Molecules and Compounds

Compounds - a pure substance composed of

 more than one type of ___ where the combine chemically in fixed, definite proportions.
> Contrast a compound to a mixture where elements can have ANY proportion.

Law of Constant Composition (Proust) - ratio of elements in a compound is always the same if the compound is pure.

Ex. Two samples of pure carbon dioxide gas were broken down into their constituent elements - carbon and oxygen - and the masses of each element were measured.

$$
\begin{aligned}
& \text { Sample } 1=4.8 \mathrm{~g} \mathrm{O}, 1.8 \mathrm{~g} \mathrm{C} \\
& \text { Sample } 2=17.1 \mathrm{~g} \mathrm{O}, 6.4 \mathrm{~g}
\end{aligned}
$$

Are these results consistent with the Law of Constant Composition?

Chemical Formulas

Chemical Formulas: describe compounds by showing the number and type of each element in the simplest unit of the compound.
$>$ Formulas use element symbols and subscripts to the right of the element symbol to describe the number of atoms of each element in the compound.

Ex. $\quad \mathrm{CO}_{2} \longleftarrow$ symbol for oxygen and subscript showing 2 oxygen atoms

Carbon dioxide

Order of writing

$\mathrm{C}_{3} \mathrm{H}_{8}$ - propane

 elements in a formula:1. Metals before nonmetals (You need to know this.)
2. Nonmetals written in order shown below

(You DON"T need to memorize this, but be able to use it to write formula)

- Give the formula of acetone, a molecule composed of six hydrogen atoms, three carbon atoms, and one oxygen atom.

Formulas with Polyatomic lons

Polyatomic ions: groups of atoms that act as a unit.
$>$ Need to write these in chemical formulas in a way to indicate that the unit is kept together

Symbol of acetate polyatomic ion (in parentheses)

Ex.

Classifying Elements and Compounds

Atomic Elements: Elements whose particles are SINGLE ATOMS.
> Most elements are atomic elements - $\mathrm{Fe}, \mathrm{C}, \mathrm{Au}, \mathrm{B}$, etc.
Molecular Elements : Elements whose particles are DIATOMIC MOLECULES
(molecule has $\mathbf{2}$ atoms of the same element)
> Only a handful of these elements (7). They are:
$\begin{array}{llllllll}\mathrm{H}_{2} & \mathrm{~N}_{2} & \mathrm{O}_{2} & \mathrm{Cl}_{2} & \mathrm{Br}_{2} & \mathrm{I}_{2} & \mathrm{~F}_{2}\end{array}$

You need to know these

Classifying Compounds

Molecular Compounds: Compounds whose

 particles are molecules made of two or more NONMETALS.$>$ Examples: $\mathrm{H}_{2} \mathrm{O}, \mathrm{CS}_{2}, \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}, \mathrm{NH}_{3}, \mathrm{PCl}_{3}$
Ionic Compounds: Compounds whose particles are CATIONS (made from metals) and ANIONS (made from 1 or more nonmetals).
> No molecules, instead have formula units
> Have 3-D lattice of cations and anions held together by $+\&$ - attractive forces
$>$ Ex. $\mathrm{NaCl}, \mathrm{CaO}, \mathrm{NiBr}_{2}, \mathrm{~K}_{3} \mathrm{PO}_{4}$

Classifying Elements and Compounds

Classify the following as ether an atomic element, molecular element, molecular compound or ionic compound.

- O_{2}
- CO
- $\mathrm{Na}_{2} \mathrm{O}$
- Co
- $\mathrm{N}_{2} \mathrm{H}_{4}$
- FeCl_{3}

Review: Main Group Cation and Anion Charges

Recall from Chapter 4:

Group IA metals form +1 cations
Group IIA metals form +2 cations Group IIIA metals form \qquad cations

Examples
$\mathrm{Na}^{+}, \mathrm{Li}^{+}$
Ca^{2+}, \qquad

Group VIIA nonmetals form -1 anions Group VIA nonmetals form \qquad anions Group VA nonmetals form ___ anions

\qquad
\qquad
To form K^{+}, neutral K needs to lose/gain 1 electron To form P^{3-}, neutral P needs to gain \qquad electrons

Periodic Table of the Elements

$*$| $\mathbf{5 7}$ | $\mathbf{5 8}$ | $\mathbf{5 9}$ | $\mathbf{6 0}$ | $\mathbf{6 1}$ | $\mathbf{6 2}$ | $\mathbf{6 3}$ | $\mathbf{6 4}$ | $\mathbf{6 5}$ | $\mathbf{6 6}$ | $\mathbf{6 7}$ | $\mathbf{6 8}$ | $\mathbf{6 9}$ | $\mathbf{7 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{L a}$ | $\mathbf{C e}$ | $\mathbf{P r}$ | $\mathbf{N d}$ | $\mathbf{P m}$ | $\mathbf{S m}$ | $\mathbf{E u}$ | $\mathbf{G d}$ | $\mathbf{T b}$ | $\mathbf{D y}$ | $\mathbf{H o}$ | $\mathbf{E r}$ | $\mathbf{T m}$ | $\mathbf{Y b}$ |
| $\mathbf{1 3 8 . 9 1}$ | 140.12 | 140.91 | 144.24 | (147) | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 |
| $\mathbf{8 9}$ | $\mathbf{9 0}$ | $\mathbf{9 1}$ | $\mathbf{9 2}$ | $\mathbf{9 3}$ | $\mathbf{9 4}$ | $\mathbf{9 5}$ | $\mathbf{9 6}$ | $\mathbf{9 7}$ | $\mathbf{9 8}$ | $\mathbf{9 9}$ | $\mathbf{1 0 0}$ | $\mathbf{1 0 1}$ | $\mathbf{1 0 2}$ |
| $\mathbf{A c}$ | $\mathbf{T h}$ | $\mathbf{P a}$ | \mathbf{U} | $\mathbf{N p}$ | $\mathbf{P u}$ | $\mathbf{A m}$ | $\mathbf{C m}$ | $\mathbf{B k}$ | $\mathbf{C f}$ | $\mathbf{E s}$ | $\mathbf{F m}$ | $\mathbf{M d}$ | $\mathbf{N o}$ |
| (227) | 232.04 | 231.04 | 238.03 | (237) | (244) | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259) |

Reference: http://www.webelements.com

Writing Ionic Compound Formulas

- Formulas for ionic compounds should be NEUTRAL. Ratio in which cations (+) and anions (-) combine is such that the charges cancel.

- The symbol for the positively charge cation is written first, followed by the anion.
- CHARGES ARE NOT SHOWN in final formula
- Subscripts give the combining ratio

Problems: (Hint: need to first determine cation and anion charges)
Write the formula of an ionic compound made from:
a) Calcium (Ca) and bromine (Br)
b) Lithium (Li) and nitrogen (N)
c) Aluminum (Al) and oxygen (O)
d) Magnesium (Mg) and sulfur (S)

Type I \& II Ionic Compounds

Two types of Ionic Compounds: Type I and Type II

> Type I-Metal forms only ONE TYPE of positive ion Group IA - IIIA metals are type I cations
Name of cation is the same as the element
Ex. Mg^{2+} magnesium cation
Na^{+}sodium cation
> TYPE II - Metal forms MORE THAN ONE TYPE of positive ion
Most transition metals are type II cations (exceptions: $\underline{\mathbf{Z n}}^{2+}, \mathrm{Cd}^{2+}, \mathbf{A g}^{+}$- always these charges)
table 5.4 Some Metals That Form Type II Ionic Compounds and Their Common Charges

Metal	Symbol lon	Name
chromium	Cr^{2+}	chromium(II)
	Cr^{3+}	chromium(III)
iron	Fe^{2+}	iron(II)
cobalt	Fe^{3+}	iron(III)
	Co^{2+}	cobalt(II)
copper	Co^{3+}	cobalt(III)
	Cu^{+}	copper(I)
tin	Cu^{2+}	copper(II)
	Sn^{2+}	tin(II)
mercury	Sn^{4+}	tin(IV)
	Hg_{2}^{2+}	mercury(I)
lead	Hg^{2+}	mercury(II)
	Pb^{2+}	lead(II)
	Pb^{4+}	lead(IV)

Name of cation is the element name followed by charge of cation in parentheses

Ex. Fe^{3+} iron (III) cation
Cu^{2+} copper (II) cation

Anion Nomenclature

Monoatomic ANION Names
Use element's root (base) name plus "ide"

VA		VIA		VIIA	
$\begin{aligned} & \mathrm{N}^{3-} \\ & \mathrm{P}^{-} \end{aligned}$	nitride	O^{2-}	oxide	F-	fluoride
		S^{2-}		Cl^{-}	
		Se^{2-}		Br^{-}	
	Some Common Polyatomic Ions				

Name	Formula	Name	Formula
Acetate	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	Hypochlorite	HClO^{-}
Carbonate	$\mathrm{CO}_{3}{ }^{-}$	Chlorite	$\mathrm{ClO}_{2}{ }^{-}$
Hydrogencarbonate (aka bicarbonate)	$\mathrm{HCO}_{3}{ }^{-}$	Chlorate	$\mathrm{ClO}_{3}{ }^{-}$
		Perchlorate	ClO_{4}^{-}
Hydroxide	OH^{-}	Sulfate	$\mathrm{SO}_{4}{ }^{\mathbf{2 -}}$
Nitrate	$\mathrm{NO}_{3}{ }^{-}$	Sulfite	$\mathrm{SO}_{3}{ }^{2-}$
Nitrite	$\mathrm{NO}_{2}{ }^{-}$	Hydrogen sulfate	$\mathrm{HSO}_{4}{ }^{-}$
Chromate	$\mathrm{CrO}_{4}{ }^{2-}$	(aka bisulfate)	
Dichromate	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	Hydrogen sulfite	$\mathrm{HSO}_{3}{ }^{-}$
Ammonium	$\mathbf{N H}_{4}{ }^{+}$	(aka bisulfite)	
Cyanide	CN-	Phosphate	$\mathrm{PO}_{4}{ }^{\mathbf{3 -}}$

You need to know the 10 polyatomic ions in BLACK by quiz \#2 (Know Names, formulas and charges - See your syllabus for list there as well)

Name cation first followed by anion

(need to determine whether cation is type I or II to name correctly)

Determine the name of the following ionic compounds from their formulas:

$\mathrm{Na}_{2} \mathrm{O}$ \qquad
CoCl_{2}
CuCl \qquad
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ \qquad
CaCO_{3} \qquad
FeCl_{3} \qquad $\mathrm{Li}_{2} \mathrm{SO}_{4}$
PbBr_{2} \qquad
SnF_{4} \qquad BaS

Determine the formula for the following ionic compounds from their names:
copper (II) iodide \qquad sodium cyanide \qquad
calcium nitride \qquad
lead (II) sulfide \qquad
ammonium chloride \qquad magnesium chlorate \qquad

Sodium hydroxide \qquad
\qquad

Naming Molecular Compounds

Molecular Compounds: contain only nonmetals and have no ions

Binary (2 element) molecular compounds are named from the formula using Greek prefixes to show quantity
$\mathrm{N}_{2} \mathrm{O}$:
$\mathrm{N}_{2} \mathrm{O}_{4}$:
CO:
$\mathrm{NO}_{3}:$
CO_{2} :
$\mathrm{S}_{2} \mathrm{Cl}_{2}$:
Phosphorus trichloride
Carbon tetrachloride
Disulfur monoxide
Greek prefixes
(for quantity)
1: mono
2: di
3:
4:
5:
6:

Acid - a molecular compound that ionizes to form H^{+} when dissolved in water (H^{+}is the cation).

$$
\mathrm{HCl}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}{ }_{(\mathrm{aq})}+\mathrm{Cl}_{(\mathrm{aq})}^{-}
$$

$>$ To indicate an acid is dissolved in water (aq) is written after the formula i.e. $\mathrm{HCl}_{(\mathrm{aq})}$
$>$ Acid formulas are written so that the acidic hydrogens(s) is the first atom(s) listed in the formula.

Examples of compounds which are acids:
HNO_{3}
$\mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{H}_{2} \mathrm{CO}_{3}$
HNO_{2}
$\mathrm{H}_{3} \mathrm{PO}_{4}$
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
HClO_{4}
HCl
HCN

Name (compound not in water) Name (dissolved in water)
Hydrogen chloride \longrightarrow hydrochloric acid HCl $\mathrm{H}_{2} \mathrm{O}$

Hydrogen nitrate HNO_{3}

$\mathrm{H}_{2} \mathrm{O}$
Hydrogen nitrite

Not all compounds with H atoms are acids: ex. $\mathrm{CH}_{4}, \mathrm{NH}_{3}$

Naming Acids

$$
\begin{array}{ll}
\frac{\text { anion }}{\text {-ate }} \longrightarrow & \text {-ic acid } \\
\text {-ite } \longrightarrow & \text {-ous acid } \\
\text {-ide } \longrightarrow & \text { hydro--ic acid }
\end{array}
$$

Give the acid name for the following compounds: HBr hydrogen bromide
$\mathrm{H}_{2} \mathrm{CO}_{3}$ hydrogen carbonate
$\mathrm{H}_{2} \mathrm{SO}_{3}$ hydrogen sulfite
$\mathrm{H}_{2} \mathrm{~S}$ hydrogen sulfide \qquad
HNO_{3} hydrogen nitrate \qquad
HClO_{3} hydrogen chlorate \qquad
HF hydrogen fluoride
$\mathrm{H}_{3} \mathrm{PO}_{3}$ hydrogen phosphite

Formula Mass

> The mass of an individual molecule or formula unit (also known as molecular mass or molecular weight)

- To calculate formula mass add the masses of the atoms in a single molecule or formula unit

Ex. What is the formula mass of $\mathrm{H}_{2} \mathrm{O}$?

$$
2(1.008 \mathrm{amu})+16.00 \mathrm{amu}=18.016=18.02 \mathrm{amu}
$$

Calculate the formula mass of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

