Chapter 8: Quantities in Chemical Reactions

Stoichiometry: the **numerical** relationship between chemical quantities in a balanced chemical equation.

Ex. $\underline{4} \text{ NH}_3 + \underline{5} \text{ O}_2 \rightarrow \underline{4} \text{ NO} + \underline{6} \text{ H}_2 \text{ O}$

The reaction above can mean: 4 molecules of NH_3 reacts with 5 molecules of O_2 to produce 4 molecules of NO and 6 molecules of H_2O .

It also can be interpreted as: $\frac{4 \text{ moles}}{5 \text{ moles}}$ of NH₃ reacts with $\frac{5 \text{ moles}}{5 \text{ moles}}$ of O₂ to produce $\frac{4 \text{ moles}}{1000 \text{ moles}}$ of NO and $\frac{6 \text{ moles}}{1000 \text{ moles}}$ of H₂O.

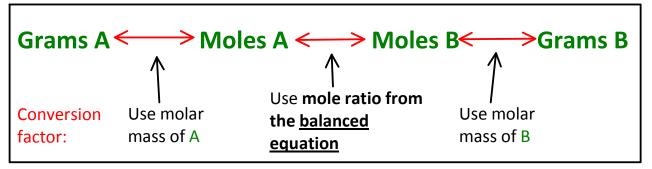
How many moles of water can be produced from 4 moles of NH₃in the chemical reaction above? (assume excess O₂)

How many moles of water can be produced from <u>5.6</u> <u>moles of NH</u>₃ in the chemical reaction above?

To solve this problem we need to use a <u>mole</u> <u>ratio</u> derived from the balanced chemical equation (text uses term "equivalence")

Mole ratios relating amounts					
of NH ₃ and H ₂ O in equation above:					
<u>4 moles NH₃</u>	or	<u>6 moles H₂O</u>			
6 mole H ₂ O		4 moles NH ₃			

?? Moles $H_2O = 5.6$ moles NH_3

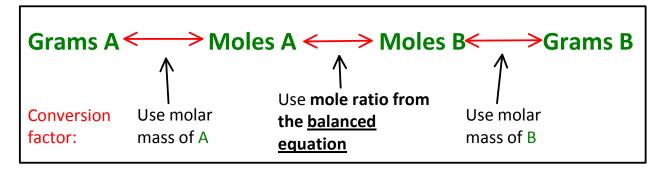

Mole to Mole Conversions

$4 \text{ NH}_3 + 5 \text{ O}_2 \rightarrow 4 \text{ NO} + 6 \text{ H}_2 \text{ O}$

How many moles of O_2 are needed to produce 7.2 moles of NO? (assume there is excess NH_3)

How many moles of ammonia (NH₃) is needed for complete reaction with 0.850 moles of oxygen gas?

Mass-to-Mass Conversions



Ex. How many grams of H_2O_2 are needed to completely react with 50.0 g of N_2H_4 ?

(molar mass N₂H₄ = 32.05g/mol; H₂O₂ = 34.02 g/mol)

 $N_2H_4 (I) + 2 H_2O_2(I) \rightarrow N_2(g) + 4 H_2O_{(g)}$

Mass-to-Mass Conversions

 $N_2H_4(I)$ + 2 $H_2O_2(I)$ \rightarrow $N_2(g)$ + 4 $H_2O_{(g)}$

How many grams of H_2O will be produced if 50.0 g of N_2H_4 completely react?

How many grams of MgCl₂ will be formed if 1.00 g of HCl is consumed?

 $Mg(OH)_{2 (s)} + 2 HCI_{(aq)} \rightarrow MgCI_{2(aq)} + 2 H_2O_{(I)}$

Mass-to-Mass Conversions

How many moles of H_2O are needed to completely react with 5.00g of NO_2 ?

 $3 \text{ NO}_{2 (g)} + H_2O_{(I)} \rightarrow 2 \text{ HNO}_{3(I)} + \text{ NO}_{(g)}$

Limiting Reactant

Analogy: There are 3 assembly lines in a bicycle factory. On a single day, the 3 assembly lines produced the following quantities:

Handle bars - 34 Tires - 62 Frames - 37

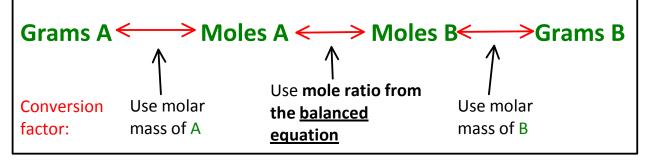
How many bicycles can be made?

<u>Limiting reactant</u> - the reactant that is USED UP first (limits the amount of product that can be made).

Limiting Reactant Calculations

In LIMITING REACTANT problems the amounts of <u>TWO</u> <u>REACTANTS</u> are given. You are asked:

1) Which reactant is used up first? (which is the limiting reactant?)


and/or

1) How much product can be formed?

Suppose you have 500.0 g Pb and 500.0 g H_2S . Which reactant will be used up first?

$Pb + H_2S \rightarrow PbS + H_2$

To solve this problem: Need to do stoichiometric calculations with **BOTH** given starting materials and convert to amount of <u>ONE chosen</u> **product** in both sets of calculations....

Limiting Reactant Calculations

If 100.0 g Fe_2O_3 is reacted with 45.00 g AI:

Fe ₂ O _{3(s)}	+ 2 Al _(s)	\rightarrow	Al ₂ O _{3(s)} +	2 Fe _(I)
(159.70 g/mol)	(26.98 g/mol)		(101.96 g/mol)	(55.85 g/mol)
			.	

- a) Which reactant is used up first (is the limiting reactant)?
- b) How many grams of iron will be formed?

If 1.00 mole of Cr is reacted with 1.00 mole of O_2 , how much Cr_2O_3 can be produced?

4 $Cr_{(s)}$ + 3 $O_{2(g)}$ \rightarrow 2 $Cr_2O_{3(s)}$

Theoretical Yield - the CALCULATED amount of a product that can be obtained from given amounts of reactants in a chemical reaction.

• It is the **maximum** amount of product that can be formed under ideal conditions.

Ex. $4 \text{ NH}_3 + 3 \text{ O}_2 \rightarrow 2 \text{ N}_2 + 6 \text{ H}_2\text{ O}$

Theoretically, starting with 4 moles of NH₃ a maximum of 2 moles N₂ can be produced.

Actual Yield - the amount of product <u>actually</u> obtained (The actual yield is always smaller than theoretical yield)

Starting with 4 moles of NH₃, only <u>1 mole of N₂ was</u> <u>actually obtained</u> when the experiment was carried out. (The actual yield will be given - it is NOT calculated)

% Yield =
$$\frac{\text{Actual Yield}}{\text{Theoretical Yield}}$$
 x 100

What is the percent yield of N_2 formed in the reaction above?

Limiting Reactant/Percent Yield Practice

4 NH ₃	+ 3 O ₂	\rightarrow 2 N ₂ +	6 H ₂ O
(17.03 g/mol)	(32.00 g/mol)	(28.02 g /mol)	(18.02 g/mol)

a) If 115.0 g NH₃ is reacted with 200.0 g of O_2 , which is the limiting reactant?

b) What is the theoretical yield of N_2 (in grams)?

c) If only 67.0 g of N_2 is obtained, what is the percent yield?