				W V
Chem 2061	– Fall 2007 –	Exam #1	Name	

1. (5 pts) D	aw the best Lewis structure for the following molecule. Show all valence	
electrons and	ll formal charges.	
Val. e -	$CH_3N_2^+$	
4	11-C-NI-NI - 14-C-B=NIT	

2. (5 pts) Draw a Lewis structure for C₂H₆O. (*Note: there are two constitutional (structural)* isomers possible for a molecule with this formula. You only need to draw one of them).

3. (8 pts) For the following molecules (given as condensed structural formulas) give the

- a. electronic geometry around the central atom
- b. molecular geometry around the central atom
- c. hybrid orbitals used in bonding by the central atom
- d. bond angles indicated

4. (3 pts) Which of the following represent a hybridized atomic orbital?

5. (5 pts) Give the products of the following acid-base reaction and indicate the direction of the equilibrium.

- 6. (3 pts) Which compound has the longest bond between adjacent carbon atoms? 7. (5 pts) CF₃NH₂ is a weaker base than CH₃NH₂. **Briefly** explain why this is the case. FEC-N-H and H-C-N-1+ electronegative on CF3 NHz Ron

 F H

 Where payr less away lable be cause

 porce of the electron density is 8. (4 pts) The four carbon atoms (W, X, Y, Z) of the compound shown here have very different electron densities. What is the order of electron densities ranked from the least electron rich carbon (most $\delta +$) to the **most** electron rich carbon (least $\delta +$)? Use $\wedge \circ + f +$ c) Z > Y > X > W9. (3 pts) Which of the following pairs of structures represent resonance forms?
 - a) The arrangement of nuclei in all contributing structures must be the same.

c) P_2, P_3

d) ₱2 only

- b) The arrangement of electrons in each contributing structure is different.
- c) Each atom in a contributing structure must have a completed valence shell.
- d) The contributing structures may have different energies.

b) P_1, P_2

10. (3 pts) Which statement is NOT true of resonance structures?

a) P_1, P_2, P_3

e) All contributing structures must have the correct number of valence electrons.

11. (3 pts) Tho	ose second-row	elements which	fu/m h for pi (π) bonds	s do so by us	e of:	
a) sigma (σ) orbitals	b) 2s orbitals	c)2p orb	itals	d) 2d orbitals	
12. (3 pts) Wh	nich anion is th	e strongest base	?			
a) CH ₃ CH ₂	2O (B)CH₃CH₂⁻	c) Cl	d) CH	₃ CO ₂	
13. (3 pts) W	hich statement	best describes t	his reaction? N	$H_3 + BF_3$	$\begin{array}{c} & & & & \\ &$	
b) an a c) an a d) an a e) non	acid base reacting acid base reacting base reacting of the above the pKa for the lo	on where the N on where the N on where the N adequately descorts	acts as a Bronster H ₃ acts as a Bron H ₃ acts as a Lew H ₃ acts as a Lew cribe the reaction ined proton in streem. Explain where B.	is acid. is base. ructure A is any this is the	base. O C C C L C L L L L L L L L	CHy Ch
H ₃ C <u>+</u>	CH ₃ H ₃	C O OH CH	pKa of A < pKa by Spr on bot	of B anis Chaling 2 Curbo	strutule (f out the (-1) myl nance stru	1) The stabilitied) charge oxygens three). In
ST CA,	CH3 CH3	PO CH	OH3 CH3	06 CH3	Structure one fleson Combed	Bonks anci Frida Vaux Conj.
15. (3 pts) Warforces?	• /	ompounds woul	•	en bonding f	for intermolecular	Je is les
;	a) CH ₃ CH ₂ F	d) CH ₃ CH ₂ CH ₂	o) CH ₃ CH ₂ OCH ₃ CH ₃	/ 1/	c) $(CH_3)_3$ $CH_2CH_2NH_2$	N Perfrage
16. (6 pts) Gi	ve the function	al group of each	n molecule.		B	Villes

c) H aldehyde

17.	(3 pts) Which statement(s) is (are) true regarding molecular orbitals?
	 a) The number of molecular orbitals is the same as the number of atomic orbitals from which they are derived. b) Bonding molecular orbitals have nodes (regions of no electron density) between the two nuclei of the bonded atoms. (Antiboding molecular orbitals have the same energy as bonding molecular orbitals. d) a and b e) a, b and c
18.	
	Orbital hybriditation occurs when s and 1,2 or 3 P
	atomic orbitals mix and new "hybrid orbitals" are Tom
	These hybrid orbitals have different shapes and directional
	Them the externic orbitals from which They came.
19.	(6 pts) Choose the most important resonance structure for the molecule described by the 3
	structures below. Discuss why you made your choice and why the other two structures are not as important.
	CH ₃ CCH=CH ₂ \longleftrightarrow CH ₃ C=CHCH ₃
	not as important. OH CH ₃ CCH=CH ₂ CH ₃ CCCH=CH ₂ H CH ₃ CCH=CH ₂ H III
	It is most important because every atom has a complete octet. I + III both have curbens which only have 3-bonds to Them, which are not as stable as compared to a structure (3 pts) Which of the following is NOT true. We complete octets
	octet. I + I book have curbins which only have I - bonds
20	(3 pts) Which of the following is NOT true.
۵۰.	complete octets
	a) All Bronsted-Lowry bases are also Lewis bases.b) All Bronsted-Lowry acids are also Lewis acids.
	c) The strength of an acid refers to the degree it ionizes.

- d) The conjugate acid of a very weak base is strong.

 e) A strong acid has a high pKa.

- b) HCN
- c) HBr
- d) NaBr
- e) CNBr

Br

22. (4 pts) The electrophilic addition reaction of HBr to 1-hexyne is significantly slower than for 1-hexene.

1-hexyne: CH₃CH₂CH₂CH₂ — C=C—H

1-hexene: CH₃CH₂CH₂CH₂ - CH= CH₂

Which of the following statements is supported by this observation?

- 1. The reactive intermediate from the 1-hexyne reaction is lower in energy than that from the 1-hexene reaction.
- 2. The reaction product from the 1-hexene reaction of more stable than that from the 1-hexyne reaction.
- The energy of activation for the protonation of 1-hexene is lower unan unat for the protonation of 1-hexyne. Take related to Each (AG * for take determined) 3. The energy of activation for the protonation of 1-hexene is lower than that for

- a) 1 only
- b) 2 only
- - c) 3 only d) 1 and 2 only
- e) 1 and 3 only
- 23. (4 pts) The electrophilic addition of HCl to ethyl vinyl ether (CH₃CH₂OCH=CH₂) can be respresented by an energy diagram. Which of the following corresponds to point B on the diagram?

- a) $CH_3CH_2OCHCH_3$ b) $CH_3CH_2OCH_2CH_2^{\oplus}$ c) $CH_3CH_2OCH(CI)CH_3$ d) $CH_3CH_2-CI^{\delta-}$ CH_3CH_2-CI

progress of reaction

24. (4 pts) Assuming that all of the steps shown on this energy diagram are reversible, what can be said about the overall transformation of A to I?

- a) $K_{\text{EOUILIBRIUM}} = [A]/[I]$ is greater than 1, and ΔG° is greater than 0.
- b) $K_{EOUILIBRIUM} = [A]/[I]$ is greater than 1, and ΔG° is less than 0.
- c) $K_{\text{EQUILIBRIUM}} = [I]/[A]$ is less than 1, and ΔG° is less than 0.
- d) $K_{EOUILIBRIUM} = [I]/[A]$ is greater than 1, and ΔG° is greater than 0.
- (e) $K_{\text{EQUILIBRIUM}} = [I]/[A]$ is greater than 1, and ΔG° is less than 0.