CHEM 2061 – Fall 2007 – EXAM #3 Name

1. (4 pts) Which of the following reactions involve inversion of configuration?

2. (10 pts, 5 each) A) Give the structure of the **major** organic product in each of the following **substitution** reactions, and B) predict whether the mechanism will be predominantly 1st order (S_N1) or second order (S_N2) . Be sure to show the correct stereochemistry of the product when necessary. If the product is a racemic mixture, draw both enantiomers.

a)
$$H$$
OTs
 CH_3CH_2OH
 Δ

3. (10 pts, 5 each) A) Give the structure of the **major** organic product in each of the following **elimination** reactions, and **B**) predict whether the mechanism will be predominantly <u>first order</u> (E1) or <u>second order</u> (E2). BE SURE TO SHOW THE CORRECT STEREOCHEMISTRY OF THE PRODUCT WHEN NECESSARY.

a)
$$\begin{array}{c} & & & & \downarrow \\ \text{Br} & & & \downarrow \\ & & & \downarrow \\ & & & \text{CH}_3 \end{array}$$

4. (10 pts) Write the **complete mechanism** for the following substitution reaction that explains the formation of the products given.

+
$$CH_3OH$$
 Δ MeO + HBr

- 5. (8 pts) a) Explain WHY the syn addition product is the only product obtained when 1-methylcyclohexene undergoes hydroboration by 9-BBN. (Please show the mechanism of this hydroboration to aid in your explanation).
 - b) Please explain the regioselectivity of the 9-BBN addition.

6. (2 pts) The IUPAC name of the following compound is 1-chloroethene.

Another way to name this compound (the common name) is _____

7. (3 pts) Which of the following is the optimum set of conditions for an E1 reaction of t-butyl bromide?

nucleophile/solvent a) CH ₃ OH	temperature (°C) 25°C
b) CH ₃ OH	80°C
c) CH ₃ O ⁻ CH ₃ OH	25°C
d) CH ₃ CH ₂ O ⁻ DMSO	25°C
e) CH ₃ CH ₂ O DMSO	80°C

8. (4 pts) Give the major product of the following reaction:

9. (3 pts) One of the isomers of 1-chloro-2-methylcyclohexane gives a single E2 elimination product upon reaction with potassium tert-butoxide. What is the reactive conformation of this isomer?

10. (5 pts) Explain WHY, in the acid-catalyzed addition of water to 2-methyl-1-propene, the major product is 2-methyl-2-propanol and not 2-methyl-1-propanol.

11. (6 pts, 3 each) Which compound in each of the following pairs will react faster in an S_N2 reaction with OH? (Circle answer) **Briefly** explain why you chose your answer.

Brief explanation

- a) CH₃CH₂I in ethanol or CH₃CH₂I in dimethyl sulfoxide
- b) H₂C=CHBr or H₂C=CHCH₂Br
- 12. (4 pts) The name (E)-1-isopropyl-1-butene is incorrect. Explain why it is incorrect and give the correct IUPAC name.
- 13. (28 pts, 4 each) Give the structure of the **major** organic product of each of the following reactions. **Clearly indicate stereochemistry where appropriate.** If the major product is a pair of enantiomers, only draw one of the two structures.

a)
$$H_2SO_4$$
 H_2O

b)
$$H_3C$$
 H_3 H_3 H_3 H_4 H_5 H_5

d)
$$H = \frac{1) O_3}{2) H_2O_2, NaOH}$$
 3) H_3O^+

e)
$$CH_3$$
 1) OsO_4 H 2) Na_2SO_3

f)
$$H_3C$$
 $CH_2CH_2CH_3$ CH_3 CH_2O_2 , NaOH CH_3 CH_2O_3

14. (3 pts) Draw the bromonium ion intermediate formed when Br₂ reacts with 2-methyl-1-propene.