Two Dimensional Coordinate System and Graphs

Cartesian Coordinate System
- Vertical Axis or y-axis
- Horizontal axis or x-axis
- Origin
- Ordered pair
- x-coordinate or abscissa
- y-coordinate or ordinate
- quadrant

Distance Formula:
\[d^2 = |x_2 - x_1|^2 + |Y_2 - Y_1|^2 \]
\[d = \sqrt{(x_2 - x_1)^2 + (Y_2 - Y_1)^2} \]

Midpoint Formula

Midpoint of \(P_1P_2 \) is \(\left(\frac{x_1 + x_2}{2}, \frac{Y_2 + Y_1}{2} \right) \)
The graph of an equation in the two variables x and y is the set of all points whose coordinates satisfy the equation.

\[y = 2x - 1 \]

<table>
<thead>
<tr>
<th>x</th>
<th>2x-1</th>
<th>y</th>
<th>(x, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-2(-2)-1</td>
<td>-5</td>
<td>(-2, -5)</td>
</tr>
<tr>
<td>-1</td>
<td>-2(-1)-1</td>
<td>-3</td>
<td>(-1, -3)</td>
</tr>
<tr>
<td>0</td>
<td>-2(0)-1</td>
<td>-1</td>
<td>(0, -1)</td>
</tr>
<tr>
<td>1</td>
<td>2(1)-1</td>
<td>1</td>
<td>(1, 1)</td>
</tr>
<tr>
<td>2</td>
<td>2(2)-1</td>
<td>3</td>
<td>(2, 3)</td>
</tr>
</tbody>
</table>

\[-x^2 + y = 1 \text{ or } y = x^2 + 1 \]

<table>
<thead>
<tr>
<th>x</th>
<th>x^2+1</th>
<th>y</th>
<th>(x, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>(-2)^2+1</td>
<td>5</td>
<td>(-2, -5)</td>
</tr>
<tr>
<td>-1</td>
<td>(-1)^2+1</td>
<td>2</td>
<td>(-1, 1)</td>
</tr>
<tr>
<td>0</td>
<td>0^2+1</td>
<td>1</td>
<td>(0, 1)</td>
</tr>
<tr>
<td>1</td>
<td>1^2+1</td>
<td>2</td>
<td>(1, 2)</td>
</tr>
<tr>
<td>2</td>
<td>2^2+1</td>
<td>5</td>
<td>(2, 5)</td>
</tr>
</tbody>
</table>
\[y = |x - 2| \]

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>5</td>
</tr>
<tr>
<td>-2</td>
<td>4</td>
</tr>
<tr>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Definition of x-intercept and y-intercept:

If \((x, 0)\) satisfies an equation, then point \((x, 0)\) is called an **x-intercept** of the graph of the equation.

If \((0, y)\) satisfies an equation, then point \((0, y)\) is called a **y-intercept** of the graph of the equation.
Definition of a Circle:
A circle is the set of points in a plane that are a fixed distance from a specified point. The distance is the **radius** of the circle, and the specified point is the **center** of a circle.

\[(x-h)^2 + (y-k)^2 = r^2 \]

where \((h,k)\) is the center of the circle and \(r\) is the radius of the circle.
Example 1
Find equation of circle that has a center of C(-4,-2) and contains the point P(-1,2)

Example 2
Find the center and the radius of a circle that is given by

\[x^2 + y^2 - 6x + 4y - 3 = 0 \]
A table, equation, or a graph represent a set of ordered pairs (x, y) is called a relation.

Definition of a Function
A function is a set of ordered pairs in which no two ordered pairs have the same first coordinate.

Example:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Domain: Set of all first coordinates of ordered pair. (“Independent variable”)

Range: Set of all second coordinates of ordered pair. (“Dependent variable”)

![Graph of ordered pairs]
Function Notation:

\[f(x) = x^2 + 1 \]

\[f(2) = \]

\[f(0) = \]

\[f(a) = \]

\[f(r+2) = \]

Piecewise – Defined Function:

\[f(x) = \begin{cases}
2x, & x < -2 \\
x^2, & -2 \leq x < 1 \\
4 - x, & x \geq 1
\end{cases} \]

Definition of Increasing, Decreasing, Constant Function.

If \(a \) and \(b \) are elements of interval \(I \) that is a subset of domain of function \(f \), then

- \(f \) is increasing on \(I \) if \(f(a) < f(b) \) when \(a < b \)
- \(f \) is decreasing on \(I \) if \(f(a) > f(b) \) when \(a < b \)
- \(f \) is constant on \(I \) if \(f(a) = f(b) \) for all \(a \) and \(b \)
One to One Function:
A “one-to-one” function satisfies condition that no two ordered pairs have same second coordinate.

Use horizontal line test to check for a one-to-one function.

The Greatest integer Function. (Floor Function)

\[
\begin{align*}
\lfloor 2.7 \rfloor &= 2 \\
\lfloor -3.1 \rfloor &= -4 \\
\text{int}\left(\frac{7}{2}\right) &= 3
\end{align*}
\]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-5 \leq x < -4)</td>
<td>-5</td>
</tr>
<tr>
<td>(-4 \leq x < -3)</td>
<td>-4</td>
</tr>
<tr>
<td>(-3 \leq x < -2)</td>
<td>-3</td>
</tr>
<tr>
<td>(-2 \leq x < -1)</td>
<td>-2</td>
</tr>
<tr>
<td>(-1 \leq x < 0)</td>
<td>-1</td>
</tr>
<tr>
<td>(0 \leq x < 1)</td>
<td>0</td>
</tr>
<tr>
<td>(1 \leq x < 2)</td>
<td>1</td>
</tr>
<tr>
<td>(2 \leq x < 3)</td>
<td>2</td>
</tr>
</tbody>
</table>

“Continuous function”
“Discontinuous function”
#75

\[
d_1 = 45 - 8t \\
\]

\[
d_2 = 6t \\
\]

\[
d = \sqrt{(5 - 8t)^2 + (6t)^2} \\
\]

#79

\[
\frac{15}{h} = \frac{3}{3 - r} \\
\]

\[
3h = \frac{15(3 - r)}{3} \\
h = 5(3 - r) \\
h = 15 - 5r \\
\]

#83

\[
d_2 = \sqrt{30^2 + x^2} \\
\]

\[
d_1 = \sqrt{20^2 + (40 - x)^2} \\
\]

\[
T(x) = \sqrt{900 + x^2} + \sqrt{400 + (40 - x)^2} \\
\]

<table>
<thead>
<tr>
<th>x</th>
<th>Total Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>74.72</td>
</tr>
<tr>
<td>10</td>
<td>67.68</td>
</tr>
<tr>
<td>20</td>
<td>64.34</td>
</tr>
<tr>
<td>30</td>
<td>64.79</td>
</tr>
<tr>
<td>40</td>
<td>70</td>
</tr>
</tbody>
</table>
2.3 Linear Functions

Definition of a Linear Function:
A function of the form \(f(x) = mx + b, m \neq 0 \) where \(m \) and \(b \) are real numbers, is a linear function of \(x \).

Slope of a line \(m \):
\[
m = \frac{\text{change in } y}{\text{change in } x} = \frac{\Delta y}{\Delta x}
\]
\[
m = \frac{\text{Rise}}{\text{Run}}
\]

The slope \(m \) of the line passing through the points \(P_1(x_1, y_1) \) and \(P_2(x_2, y_2) \) with \(x_1 \neq x_2 \) is given by
\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\]
2.3

The graph of $x=a$ is a vertical line through $(a,0)$

The graph of $y=b$ is a horizontal line through $(0,b)$

Slope-Intercept Form

The graph of $fx=mx+b$ is a line with slope m and y-intercept $(0,b)$

Point-slope Form

The graph of $y - y_1 = m(x - x_1)$ is a line with slope m and passes through (x_1, y_1)

Real solutions and x-Intercepts Theorem

For every function f, the real number c is a solution of $f(x)=0$ if and only if $(c,0)$ is an x-intercept of the graph $y=f(x)$
Parallel and Perpendicular Lines

Let ℓ_1 be a graph of $f_1(x) = m_1x + b_1$

and ℓ_2 be a graph of $f_2(x) = m_2x + b_2$

- ℓ_1 and ℓ_2 are parallel iff $m_1 = m_2$
- ℓ_1 and ℓ_2 are perpendicular iff $m_1 = -\frac{1}{m_2}$
Example 1 Find the slope of line through points (-5, -1) and (-3,4)

Example 2 Graph $y = \frac{2}{3}x - 4$

Example 3 Graph $3x - 2y = -6$

Example 4 Find equation of line in $y = mx + b$ form through (-2, 3) and $m = -4$

Method 1

Method 2
Example 5 Find equation of line in $y=mx+b$ form through $(4, -2)$ and $(0, 3)$

Example 6 Find equation of line through $(6, -3)$ and perpendicular to $y = 5x - 3$
Definition of a Quadratic Function
A quadratic function of x is a function that can be represented by an equation of the form

$$f(x) = ax^2 + bx + c$$

Where a, b, and c are real numbers and $a \neq 0$

Definition of a Symmetry with Respect to a Line.
A graph is symmetric with respect to a line L if for each point P on the graph there is a point ‘P’ on the graph such that the L is the perpendicular bisector of the line segment PP'.

Standard Form of Quadratic Equation
Every quadratic function f given $f(x) = ax^2 + bx + c$ can be written in the standard form

$$f(x) = a(x - h)^2 + k$$

The graph of f is a parabola with vertex (h,k) and line of symmetry is $x = h$

Example 1 Given $f(x) = x^2 + 6x - 1$, complete the square to find the standard form of a quadratic function. Sketch graph and label vertex and axis of symmetry.
Finding x coordinate of the vertex of a quadratic function.

Zero of a quadratic function $ax^2 + bx + c = 0$ are

$$\frac{-b + \sqrt{b^2 - 4ac}}{2} \quad \text{and} \quad \frac{-b - \sqrt{b^2 - 4ac}}{2}$$

Because of symmetry of a parabola, the x coordinate of the vertex is the average of the two zero’s or

$$x\text{-coord of vertex} =$$

Vertex Formula:

The function $f(x) = ax^2 + bx + c$ has vertex with coordinates $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$

Example 2 Use the vertex formula to determine the vertex of the graph of the function and write function in standard form

$$f(x) = 3x^2 - 6x + 5$$
Properties of Graphs

Symmetry

Symmetric with respect to x axis:

Symmetric with respect to y axis:

Symmetric with respect to a point or the origin:

The graph of an equation is symmetric with respect to:

- the y-axis if replacement of x with -x leaves equation unaltered. “**EVEN**” Function
- the x-axis if replacement of y with –y leaves equation unaltered
- the origin if replacement of x with –x and y with –y leaves equation unaltered. “**ODD**” Function
If f is a function and c is a positive constant, then:

if $c > 1$ the graph of $y = c \cdot f(x)$ is the graph of $y = f(x)$ stretched vertically by a factor of c away from the x-axis.

if $0 < c < 1$ the graph of $y = c \cdot f(x)$ is the graph of $y = f(x)$ compressed vertically by a factor of c toward the x-axis.

\[
\begin{align*}
 f(x) &= |x| \\
 g(x) &= 2f(x)
\end{align*}
\]

\[
\begin{align*}
 f(x) &= |x| \\
 g(x) &= \frac{1}{4}f(x)
\end{align*}
\]
If f is a function and c is a positive constant, then

if $c > 1$ the graph of $y = f(cx)$ is the graph of $y = f(x)$ compressed horizontally by a factor of $\frac{1}{c}$ toward y-axis

if $0 < c < 1$ the graph of $y = f(cx)$ is the graph of $y = f(x)$ stretched horizontally by a factor of $\frac{1}{c}$ away from the y-axis.

\[f(x) = x^2 \]

\[c = 2 \]
\[y = f(2x) = (2x)^2 = 4x^2 \]

\[f(x) = x^2 \]
\[c = \frac{1}{2} \]
\[y = f(\frac{1}{2}x) = (\frac{1}{2}x)^2 = \frac{x^2}{4} \]
Operations of Functions

Sum \((f + g)(x) = f(x) + g(x)\)

Difference \((f - g)(x) = f(x) - g(x)\)

Product \((fg)(x) = f(x) \cdot g(x)\)

Quotient \(\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \quad g(x) \neq 0\)

Domain of \(f + g, f - g, fg, \frac{f}{g}\):

For the functions \(f\) and \(g\), the domains of \(f + g, f - g, \text{ and } fg\)
consist of all real numbers formed by the intersection of the domain of \(f\) and \(g\). The
domain of \(\frac{f}{g}\) is the set of all real numbers formed by the intersection of domains of \(f\)
and \(g\), except for real numbers such that \(g(x) = 0\).
2.6
Examples

Let \(f(x) = x^2 - 9 \) and \(g(x) = 2x + 6 \)

Find

a) \((f + g)(5) \)

\[
(f + g)(x) = x^2 - 9 + 2x + 6 = x^2 + 2x - 3
\]
\[
(f + g)(5) = 5^2 + 2(5) - 3 = 25 + 10 - 3 = 32
\]

b) \((f \circ g)(-1) \)

\[
(f \circ g)(x) = (x^2 - 9)(2x + 6) = 2x^3 + 6x^2 - 18x - 54
\]
\[
(f \circ g)(-1) = 2(-1)^3 + 6(-1)^2 - 18(-1) - 54 = -32
\]

c) \(\frac{f}{g}(4) \)

\[
\frac{f}{g}(x) = \frac{x^2 - 9}{2x + 6} = \frac{(x + 3)(x - 3)}{2(x + 3)} = \frac{x - 3}{2}
\]
\[
\frac{f}{g}(4) = \frac{4 - 3}{2} = \frac{1}{2}
\]
If \(f(x) = \sqrt{x-1} \) and \(g(x) = x^2 - 4 \), find domain of \(f + g, f - g, f \cdot g, \text{ and } \frac{f}{g} \)

Domain of \(f(x) \) is

Domain of \(g(x) \) is

Domain \(f + g, f - g, f \cdot g \) is

Domain for \(\frac{f}{g} \) same as above except for values of \(x \) where \(g(x) = 0 \)

Or \(x^2 - 4 = 0 \) \(x = \pm 2 \)

(only need to consider +2)

Domain of \(\frac{f}{g} \) is
2.6
Difference Quotient

\[
\frac{f(x+h) - f(x)}{h}, h \neq 0 \text{ is called difference quotient.}
\]

Example
Find “difference quotient” of \(f(x) = x^2 + 7 \)

\[
\frac{f(x+h) - f(x)}{h} = \frac{[(x+h)^2 + 7] - [x^2 + 7]}{h}
\]

\[
= \frac{[x^2 + 2xh + h^2 + 7] - [x^2 + 7]}{h}
\]

\[
= \frac{x^2 + 2xh + h^2 + 7 - x^2 - 7}{h}
\]

\[
= \frac{2xh + h^2}{h} = \frac{h(2x + h)}{h} = 2x + h
\]
Definition of Composition of Two Functions
Let \(f \) and \(g \) be two functions such that \(g(x) \) is in domain of all \(f \) for all \(x \) in domain of \(g \). Then the composition of two functions, denoted by \(f \circ g \), is the function whose value at \(x \) is given by \((f \circ g)(x) = f(g(x)) \).

#38 p. 252
\[f(x) = 2x - 7, \quad g(x) = 3x + 2 \]
\[(f \circ g)(x) = \]
\[(g \circ f)(x) = \]

#40
\[f(x) = x^2 - 11x, \quad g(x) = 2x + 3 \]
\[(f \circ g)(x) = \]
\[(g \circ f)(x) = \]