10.5 Parametric Surfaces

In 10.1 we described a space curve by vector function \(\mathbf{r}(t) \) which had a single parameter, \(t \). We parametrically represented a curve.

Today we'll describe a parametric surface by a vector function \(\mathbf{r}(u,v) \) which has two parameters, \(u \) and \(v \).

One parameter is needed for a curve in space and two parameters are needed to describe a surface.

So it will look like this:

\[
\mathbf{r}(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle
\]

these components are functions of 2 variables, \(u \) and \(v \)

For example: \(\mathbf{r}(u,v) = \langle \cos u, v^2 + 1, u + v \rangle, \ -1 \leq u \leq 1, \ -1 \leq v \leq 1 \)

Each choice of \(u \) and \(v \) is a point on the surface which is traced out by the tip of \(\mathbf{r} \).

Input \((u, v) \), output \(\mathbf{r}(u,v) \).

So \(\mathbf{r}(u,v) \) is a vector-valued function defined on a region (the domain) in the \(uv \)-plane.

Before, the domain of \(\mathbf{r}(t) \) was the \(t \) values.
Now we’re going to find parametric representations for surfaces.

Let’s start with a plane:

We’ve already defined a plane as $ax + by + cz + d = 0$ or $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$ using normal vector $\mathbf{n} = \langle a, b, c \rangle$.

If we want to find a vector function that represents the plane that passes through point (x_0, y_0, z_0) with position vector \mathbf{r}_0 and that contain two non parallel vectors \mathbf{a} and \mathbf{b}.

I can define any point on the plane by a scalar multiple

$$u\mathbf{a} + v\mathbf{b}$$

In 3-dimensions we need a starting point (x_0, y_0, z_0) from position vector \mathbf{r}_0 and then we add on the points we defined from above. This describes every point on the surface (plane).

A parametric representation of a plane in 3-dimensions is

$$\mathbf{r}(u, v) = \mathbf{r}_0 + u\mathbf{a} + v\mathbf{b}$$

$$\mathbf{r}(u, v) = \langle x_0, y_0, z_0 \rangle + u\langle a_1, a_2, a_3 \rangle + v\langle b_1, b_2, b_3 \rangle$$

$$\mathbf{r}(u, v) = \langle x_0 + ua_1 + vb_1, \ y_0 + ua_2 + vb_2, \ z_0 + ua_3 + vb_3 \rangle$$

** These parametric equations of surfaces will become very important later on!

<table>
<thead>
<tr>
<th>Parametric Equation of a Plane</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = x_0 + ua_1 + vb_1$</td>
</tr>
<tr>
<td>$y = y_0 + ua_2 + vb_2$</td>
</tr>
<tr>
<td>$z = z_0 + ua_3 + vb_3$</td>
</tr>
</tbody>
</table>

Example: Can you identify the surface with the given vector equation $\mathbf{r}(u, v) = \langle u + v, \ 3 - v, \ 1 + 4u + 5v \rangle$?

$$\mathbf{r}(u, v) = \langle u + v, \ 3 - v, \ 1 + 4u + 5v \rangle$$

$$= \langle 0 + 1u + 1v, \ 3 + 0u - 1v, \ 1 + 4u + 5v \rangle$$

$$= \langle 0, \ 3, \ 1 \rangle + \langle 1u + 1v, \ 0u - 1v, \ 4u + 5v \rangle$$

$$= \langle 0, \ 3, \ 1 \rangle + u\langle 1, \ 0, \ 4 \rangle + v\langle 1, \ -1, \ 5 \rangle$$
To use more conventional formulas of equations of planes such as \(ax + by + cz + d = 0 \) or \(a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 \) where the normal vector is \(\vec{n} = \langle a, b, c \rangle \) you would take the cross of vectors \(\vec{a} \) and \(\vec{b} \).

\[
\vec{a} \times \vec{b} = \begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\
1 & 0 & 4 \\
1 & -1 & 5
\end{vmatrix} = (4, -1, -1)
\]

so \(4(x - 0) - (y - 3) - (z - 1) = 0 \) or \(4x - y - z = -4 \)

There is an easier way to parametrize a plane other than \(\vec{r}(u, v) = \langle x_0 + ua_1 + vb_1, y_0 + ua_2 + vb_2, z_0 + ua_3 + vb_3 \rangle \).

In general, a surface given as the graph of a function of \(x \) and \(y \), in the form \(z = f(x, y) \), can always be regarded as a parametric surface by taking \(x \) and \(y \) as parameters and writing \(x = x, y = y, z = f(x, y) \).

Solve \(4x - y - z = -4 \) for \(z \) and you get \(z = 4x - y + 4 \) so let \(x = x, y = y, z = 4x - y + 4 \) or \(\vec{r}(x, y) = \langle x, y, 4x - y + 4 \rangle \)

** This will be very useful later!

What if we solved for \(y \) in terms of \(x \) and \(z \) instead?

What if we solved for \(x \) in terms of \(y \) and \(z \) instead!

Example 2:
Find a parametric representation for the elliptic paraboloid, \(z = x^2 + y^2 \).

Just leave it with parameters \(x \) and \(y \), there's no need to change it to \(u \)'s and \(v \)'s.

Parametric representations are also called parametrizations. They are not unique; there are numerous ways to parametrize surfaces.

Example 3:
Find a parametric representation for the surface \(z = 2\sqrt{x^2 + y^2} \). This is the top half of cone \(z^2 = 4x^2 + 4y^2 \).
To parametrically represent the part of cone $z = 2\sqrt{x^2 + y^2}$, you probably did Case 1:

Case 1 – You chose x and y as parameters by letting $x = x, y = y, z = 2\sqrt{x^2 + y^2}$

so the vector equation is $\mathbf{r}(x,y) = \langle x, y, 2\sqrt{x^2 + y^2} \rangle$, a parametric representation of the cone.

You could do this instead:

Case 2 – Choose r and θ as parameters (polar coordinates). A point (x, y, z) on the cone satisfies

$x = r \cos \theta, \quad y = r \sin \theta, \quad \text{and} \quad z = 2\sqrt{x^2 + y^2} = 2\sqrt{r^2} = 2r$

so the vector equation is $\mathbf{r}(r, \theta) = \langle r \cos \theta, r \sin \theta, 2r \rangle$ where $r \geq 0, \quad 0 \leq \theta \leq 2\pi$.

HW #20:
Find a **parametric representation** for the lower half of the ellipsoid $2x^2 + 4y^2 + z^2 = 1$.

You don’t need to follow the solution’s manual on HW #’s 3-6 where you are asked to **Identify the surface with the given vector equation**. You could just do as we did before and just eliminate the parameter, except now we need to eliminate both parameters u and v instead of just t.

We have much more practice seeing the surface in terms of x, y and z because we have a lot more experience with them. Set the stuff in the x-component spot equal to x, set the stuff in the y-component spot equal to y and set the junk in the z-component equal to z and then work your magic trying substitution, elimination, or using some identities like $\sin^2 t + \cos^2 t = 1$ to get rid of parameters u and v and create x's, y's and z's. Just eliminate both parameters u and v and put it in terms of x, y and z so we’ll have a chance at recognizing it.

HW #4.
Identify the surface of the vector equation $\mathbf{r}(u,v) = \langle 2 \sin u, 3 \cos u, v \rangle, \quad 0 \leq v \leq 2$. (notice the restriction placed on parameter v)
Show them this surface on *Mathematica* I have on our website.

Grid Curves on a Parametric Surface (sometimes called grid lines) – found by holding parameters u and v constant one at a time.

Example 1. **Find the grid curves** associate with u being held constant $\mathbf{r}(u,v) = \langle 2\sin u, 3\cos u, v \rangle$.

Find the grid curves associate with v being held constant $\mathbf{r}(u,v) = \langle 2\sin u, 3\cos u, v \rangle$.

TEC 10.5 has crazy surfaces with crazy grid curves to see.

Mathematica Lab 10.5 –

I want you to do 8, 9, and 10 on *Mathematica*.

We will do #7 right now so you’ll know what I’m looking for:

- Use *Mathematica* to graph the parametric surface. Print out a nice picture.
- Copy and Paste the surface to manipulate it into a desired position so you can see the various grid curves.
- Get a printout and indicate which grid curves have u constant and indicate which grid curves have v constant by drawing on the printout with two different colored pens or markers. Give me a key (Example: the red pen are the grid curves associated with u being constant and the green pen are the grid curves associated with v being constant).
- Be sure to label your x, y, and z-axis on each graph.
- Be very clear.
General Example 4:
Find a parametric representation of a sphere \(x^2 + y^2 + z^2 = a^2 \).

remember spherical coordinates \((\rho, \theta, \phi)\)
\[
\begin{align*}
x &= \rho \sin \phi \cos \theta, \\
y &= \rho \sin \phi \sin \theta, \\
z &= \rho \cos \phi
\end{align*}
\]
Hopefully you came up with \(\tilde{r}(\theta, \phi) = (a \sin \phi \cos \theta, \ a \sin \phi \sin \theta, \ a \cos \phi) \), \(0 \leq \theta \leq 2\pi, \ 0 \leq \phi \leq \pi \).

Spherical coordinates, \((\rho, \theta, \phi)\), where spheres are represented \(\rho = a \).

We **choose** \(\theta \) and \(\phi \) as parameters in spherical coordinates, substitute \(\rho = a \) into the conversion equations
\[
x = \rho \sin \phi \cos \theta, \quad y = \rho \sin \phi \sin \theta, \quad z = \rho \cos \phi,
\]
then
\[
\tilde{r}(\theta, \phi) = (a \sin \phi \cos \theta, \ a \sin \phi \sin \theta, \ a \cos \phi), \quad 0 \leq \theta \leq 2\pi, \ 0 \leq \phi \leq \pi.
\]

So the parameter domain is the rectangle \(D = [0, 2\pi] \times [0, \pi] \)

Let's look at the grid curves:

If we **hold** \(\theta \) **constant**, \(\theta = c \), look to where there is our variable \(\phi \).

\[
\tilde{r}(c, \phi) = (a \sin \phi \cos c, \ a \sin \phi \sin c, \ a \cos \phi)
\]

There's \(\phi \) in each component.

The \(x, y, \) and \(z \) components all have to with \(\phi \) which comes off the \(z \)-axis. So these grid curves are effected by \(x, y, \) and \(z \) all at the same time. They are the meridians which connect the north and south poles.

If we **hold** \(\phi \) **constant**, \(\phi = c \), then look to where parameter \(\theta \) is located.

\[
\tilde{r}(\theta, c) = (a \sin c \cos \theta, \ a \sin c \sin \theta, \ a \cos c)
\]

\(\theta \) is **only located in the \(x \) \& \(y \) components**

So our **grid curves will be parallel to \(xy \)-plane only.**

\[
x = a \sin c \cos \theta \quad \left(\frac{x}{a \sin c} \right)^2 + \left(\frac{y}{a \sin c} \right)^2 = 1
\]
\[
x^2 + y^2 = (a \sin c)^2
\]

Grid curves are circles parallel to \(xy \)-plane (horizontal). Circles of constant latitude (like the equator).

If we **hold** \(\theta \) **constant**, \(\theta = c \), then look to where parameter \(\phi \) is located.

\[
\tilde{r}(c, \phi) = (a \sin \phi \cos c, \ a \sin \phi \sin c, \ a \cos \phi)
\]

There's \(\phi \) in each component. The \(x, y, \) and \(z \) components all have \(\phi \). So these grid curves are effected by \(x, y, \) and \(z \) all at the same time. They are the meridians which connect the north and south poles (remember \(\phi \) comes off the \(z \)-axis).

Often we only need to look at a piece of a surface instead of the whole thing. It's easy to put restrictions on parameters. For example, how could we restrict a sphere to the 1st octant? \(\theta \leq \leq \), \(\phi \leq \leq \).

** This will be important later!

We will not cover Surfaces of Revolution.