
 

 

12.4 Double Integrals in Polar Coordinates    Do Integration manually on HW! 
 
 
 
When describing regions, in polar coordinates is way easier than rectangular, we will always use them in 
calculating double integrals. 
Let’s say the shaded region is the region that you are integrating over. 
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    2 2 21x y+ =   2 2 22x y+ =  
 
    How could you use Type I to represent this region ?    ↑  
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     1        2   How could you use Type II to represent this region ?   →  
 
 
 
 
     
 
But, it’s easy in Polar 
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    r is always positive in polar 

 
Polar arrows shoot out from the origin.   
Every polar arrow enters 1r =  and exits 2r = . 
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This is just our region in the xy-plane, we still need to project it up to the surface so our double integral 
would look something like: 
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I’ll explain this extra r . 
 
 
Last time in rectangular we looked at columns and added them all up.   
This time in polar we look at polar rectangles (wedges.)   
 
Page 853, figures 3 and 4. 
 
We’ll take our entire region, R, and divide it up into polar subrectangles and add them up with a Riemann 
Sum.  As we let the number of subrectangles →∞ , it becomes an exact instead of approximate. 
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          r          dθ   Think of this as a (polar) rectangle 
 
 
       Before,   or   dA dx dy dy dx=   that’s how we calculated  
                                               Now                             **        the area of the rectangles. 
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  We must change our fn. to polar. 
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              “beta” 
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         r a=                           surface                  new polar attachment 
             still  r dr dθ  
 
All polar arrows start from the origin and enter r a=  and exit r b=  and are contained from α θ β≤ ≤ . 
 
So our problem 
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The functions will need to be converted from rectangular to polar so convert all x’s and y’s to r’s and 'sθ   
by using: 
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Arrows start at origin 

If, for example, our ( ) 2, 3f x y x y= + .   The question might read:   
 
Evaluate ( )23

R
x y dy dx+∫∫  using polar coordinates.  You combine this extra r with your function before you 
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(on the graphing calculator) 
Don’t have time to solve this one.  It’s a pain to solve manually (the HW problems can and should be 
done manually).   
 
Be able to integrate with your calculator also, so check a couple of them as you are doing them 
manually; especially the even-numbered problems. 
 
 
 
 
 
The equations for r don’t have to be just constants, they may have variable θ  in them so you may have all 
polar arrows start from the origin and enter  ( )1r h θ=  and exit ( )2r h θ=  contained by α θ β≤ ≤ . 
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  ( )1r h θ=         If       ( ) ( ) ( ){ }1 2, | ,D r h r hθ α θ β θ θ= ≤ ≤ ≤ ≤ , then 
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HW #20:  
Use polar coordinates to find the volume of the solid bounded by the paraboloid 2 21 2 2z x y= + +  and the 
plane 7z =  in the first octant. 
 
 
 These are difficult to draw, but a good drawing really helps to eliminate mistakes.   
 The paraboloid is shifted up 1 unit.  Floating above the xy-plane. 

 
 Where does the plane intersect the paraboloid? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
This was also in the last section.  I didn’t mention it in 12.3 

 
 

You could use a double integral to find the area (not the volume) of a region, D,  IF  you let the function, 1z = . 
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When we integrate the constant function ( , ) 1f x y =  over a region D, we get the area of D.   
You’re taking the third dimension away so volume turns into area.  Your height is 1, so you are multiplying the area 
of region D times 1, so you get the area of region D. 
This idea will come up again! 
 
 
 
Example 1:   
Find the area inside spiral ,   where  0rθ θ π= ≤ ≤ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The worksheet online is due in a week:   
I ask you to compute an area numerous ways:   

1)   Using geometry,  
2)   Using Single variable (one integral  from your old Calculus II ideas),  
3)   Using double integrals (both  and ,    and also usingdxdy dydx r dr dθ∫∫ ∫∫ ∫∫ K  fun!)   
4)   Using polar coordinates (not very fun on this one) 

 
It’s nice to see the same question approached differently. 
 
Make sure all of your answers match each other. 



Example 2:  

Use polar coordinates to find the volume of the solid inside the sphere 2 2 2 16x y z+ + =  and outside the cylinder 
2 2 4x y+ = . 

 
A little hard to visualize/draw the 3-dimensional figure, but very necessary! 
Necessary to draw the region over integration. 
 
If done manually, you could split it up into the product of two integrals because the limits of integration are all 
constants.  Your choice. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Let’s practice one more converting to polar. 
 
Example 3: 

Evaluate the iterated integral,  ( )
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If you need to integrate 2cos x or 2sin x  I’ll expect you to be able to integrate them manually.  Remember to use 
half-angle formulas and substitute   

2 1 cos2 1 cos2cos   or  
2 2 2

x xx +
= + . 

2 1 cos2 1 cos2sin   or  
2 2 2

x xx −
= −  

Once you make this substitution, the integration is easy. 


