#### **Comparators**

- Compares binary numbers
- Uses the XOR or XNOR

|   | A | В | XOR |
|---|---|---|-----|
| • | O | O | 0   |
|   | 0 | ١ | 1 1 |
|   | ı | O | 1   |
|   | 1 | 1 | 10  |

| A | В | XNOR |
|---|---|------|
| O | O | 1    |
| 0 | ١ | 0    |
| ı | O | 0    |
| ١ | 1 | 1 (  |

## **2-bit Comparators**



#### 4-bit Comparator with Inequality

$$\frac{A = B}{X_{E}} = \left(\overline{A_{2} \oplus B_{3}}\right) \left(\overline{A_{2} \oplus B_{2}}\right) \left(\overline{A_{1} \oplus B_{1}}\right) \left(\overline{A_{0} \oplus B_{0}}\right)$$

If Az=Bz => Look at the next significant bit

$$\begin{array}{c|cccc}
A_{\lambda} & B_{\lambda} & X_{G_{\lambda}} \\
\hline
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1 => A_{\lambda} \overline{B_{\lambda}}
\end{array}$$

$$\frac{A_{\lambda} B_{\lambda} X_{G_{\lambda}}}{Q Q Q Q_{Q}}$$

$$\frac{Q Q Q Q}{Q Q Q}$$

$$\frac{Q Q Q}{Q Q Q}$$

$$\frac{Q Q Q}{Q Q}$$

$$\frac{Q Q}{Q Q}$$

$$\frac{A_{\lambda}B_{\lambda} | \chi_{L_{\lambda}}}{O G O}$$

$$\frac{O G O}{O I I = \overline{A_{\lambda}}B_{\lambda}}$$

$$1 O O$$

$$1 I O$$

$$1 I O$$

$$\frac{A_{\lambda}B_{\lambda} | \chi_{L_{\lambda}}}{O G O}$$

$$\frac{A_{\lambda}B_{\lambda}}{O G O}$$

$$\frac{A$$

#### Cascading

- Adds three inputs





#### **Decoders**

### **Basic Binary Decoder**

- Determines whether a binary number occurs in a circuit
- Output is 1 if a binary number occurs



# 4-bit Decoder (1 of 16 Decoder)



## Cascading

- Two additional inputs (Enablers)
- Two 4-bit decoders can be cascaded to form a 5-bit decoder



# **BCD-to-7 Segment Decoder**



#### **Encoders**

- Decimal to BCD Encoder



#### Multiplexers (Data Selectors, MUX)

- Allows for multiple lines of data to go onto a single line
- Parallel to Serial Data Transfer

#### 4-input Multiplexer



Data Select Bits

Combinations of the Data Select Bits represent each of the data inputs

| S,                                                                                                          | 50 | Input<br>selected |          |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|----|-------------------|----------|--|--|--|--|
| 0                                                                                                           | 0  | Do                | 0, 5, 5, |  |  |  |  |
| 0                                                                                                           | ţ  | B <sub>1</sub>    | D1 51 50 |  |  |  |  |
| l                                                                                                           | 0  | \ D <sub>2</sub>  | D2 5, 50 |  |  |  |  |
| 1                                                                                                           | 1  | D3                | D3 5, 50 |  |  |  |  |
| $Y = D_0 \widetilde{S}_1 \widetilde{S}_0 + D_1 \widetilde{S}_1 S_0 + D_2 S_1 \widetilde{S}_0 + D_3 S_1 S_0$ |    |                   |          |  |  |  |  |

#### 8-input Multiplexer

- Additional Data Select Bit

| Sz | ۶, | So      | Input<br>Sciected |             |
|----|----|---------|-------------------|-------------|
| 0  | 0  | 0       | Do                | Do 3, 5, 50 |
| 0  | 0  | 1       | D1                | D1 32 5, 50 |
| 0  | ι  | 0       | D <sub>2</sub>    | D, 5, 5, 50 |
| 0  | 1  | l       | D <sub>3</sub>    | D3 52 5, 50 |
| 1  | 0  | 0       | Dy                | D4 52 51 50 |
| l  | 0  | 1       | $D_5$             | D5525150    |
| 1  | (  | $\circ$ | Do                | 06525,50    |
| \  | ١  | l       | $D_7$             | 0, 525,50   |
|    |    |         | •                 |             |



- Can use Multiplexers to implement Standard SOP expressions
  - Inputs: Data Select Bits
  - D's: Activate or deactivate product terms

Implement 
$$X = \overline{A} \overline{B} C + \overline{A} \overline{B} C + ABC$$

$$A = S_2 \qquad B = S_1 \qquad C = S_0$$

Power: D,, D, , D7

Ground: Do, O3, D4, D5, D6



## **Demultiplexers (DEMUX)**

- Serial to Parallel data transfer



