The Chemical Context of Life
Chapter 2

Elements, Molecules and Compounds

- Substances that can be broken down to other substances by a chemical reaction:
 - 92 occur in nature
 - 25 essential for life

- Smallest unit of an element

Elements

- Have a one or two letter
- 4 make up 96% of living organisms:
 - (C)
 - (H)
 - (O)
 - (N)

Parts of the Atom

- __________ – __________ charged

Atomic Number

- Atomic Number = __________ of __________
 - Unique to that element
- Atomic number written as __________ to __________ of symbol
 - e.g. _2^He_
Chapter 2 - The Chemical Context of Life

Atomic Weight
- Measured in ____________ (1 dalton $\approx 1.7 \times 10^{-24}$ g)
- Protons weigh _______ dalton
- Neutrons weigh _______ dalton
- Electrons weigh 1/2000 of a dalton
- Atomic weight (mass) = weight of _______ + weight of _______
 • Ignore the mass of _______ in the total mass of an atom
- Atomic weight is written as a _______ to _______ of symbol
 • e.g. 4_2He

Parts of the Atom
- _______ – _______ charged
 • Protons – positively charged
 • Neutrons – no charge
- _______ – _______ charged

Charged Particles
- Nucleus (core) has net positive charge
 • _______ and _______
- Electrons are _______ to the positively charged nucleus
 • Electrons circle outside of the nucleus at the speed of light
- Atom is _______ in charge if protons = electrons

Atomic Number, Weight, and Charge
- Atomic number = number of protons
- Atomic weight = number of neutrons + number of protons

- When # protons = # electrons, then there is no (__________) charge
Chapter 2 - The Chemical Context of Life

Examples

- Boron
 - Atomic number 5
 - Atomic mass 11
 - How many protons? __________
 - Electrons? __________
 - Neutrons? __________

- Aluminum
 - Atomic number of 13
 - Atomic mass of 27
 - How many protons? __________
 - Electrons? __________
 - Neutrons? __________

Electron __________ – Position in Relation to Nucleus

- __________ charged __________ electrons attracted to __________ charged protons
- More __________ energy if farther away
- Potential energy in electrons changes in steps
 - __________ shell __________ in potential energy
 - __________ shell __________ in energy

Electron __________

- 1st shell: one orbital – __________ electrons
- 2nd shell: four orbitals – __________ electrons
- 3rd shell: four orbitals – __________ electrons
- Electrons __________ the __________ shells completely first
- No more than __________ electrons in the same orbital
- Unpaired electrons are __________

Valence Shells

- Outer shell of electrons = __________ shell
- Number of __________ in valence shell determines how __________ an atom is
- Atom with a __________ valence shell is __________ (“inert” or “noble element”)

Valence Shells of 1st 18 Elements of the Periodic Table

- Arranged in rows according to how many __________ in the valence shell
Chapter 2 - The Chemical Context of Life

Chemical

- How atoms stay together to form ________
 - Only ________ interact to make bonds
- Bonds occur by ________ or ________ valence electrons
 - To complete their valence shell
- ________ ________ = ________
 - Electrons needed to fill the valence shell
 - H: 1
 - O: 2
 - N: 3
 - C: 4

Electronegativity

- The strength of the pull on electrons by the atom’s nucleus
- Shared electrons pulled by both nuclei
 - Tug of war for electrons
- Atoms of different elements have different ________
- ________ one of the ________ electronegative of the 92 atoms
 - Often has unequal electron sharing

Types of Bonds

- ________ – strongest
 - ________ -polar
 - ________
- ________ – medium in strength
- ________ – weak
- ________ der ________ interactions
 - Very weak – not even a real bond

Covalent Bonds

Sharing a pair of valence electrons

- Very ________
- e.g. Hydrogen
 - 1 valence electron
 - Valence capacity is 2
- e.g. Oxygen
 - 6 valence electrons
 - Valence capacity is 8
 - Can share ___ pairs to make double bond
Chapter 2 - The Chemical Context of Life

Polar & Non-Polar Covalent Bonds

- Electronegativity
 - How strong atom’s nucleus pulls on electrons
 - ________ - ________ bonds
 - ________ electronegativity ________ electrons ________
 - ________ bonds
 - ________ electronegative atoms pull electrons ________

Non-Polar Covalent Bonds

- Atoms of pure elements have ________ electronegativity
 - H₂ and O₂
- Atoms of compounds may have ________ electronegativity
 - Methane – CH₄
 - 1 valence electron in H
 - 4 valence electrons in C
 - Four single covalent bonds

Polar Bonds

- Highly electronegative atoms pull electrons closer
- e.g. Oxygen
 - ________ electronegative
- Water – H₂O
 - 1 valence electron in H
 - 6 valence electrons in O
 - Two single covalent bonds
 - Electrons stay ________ to Oxygen
 - Oxygen has ________ negative charge
 - Each hydrogen has ________ positive charge
Chapter 2 - The Chemical Context of Life

Ions and Ionic Bonds

- When electronegativity is ___________ different
- One atom _________ an electron from it’s partner
 - Results in ___________ atoms
- ___________: Charged atom or molecule (+ or -)
- ___________ ___________: opposite charge ions attracted
 - ___________: A negatively charged ion (1+ electrons gained)
 - ___________: A positively charged ion (1+ electrons lost)

Hydrogen Bonds

- ___________ - Charge Attractions
 - H atom with ___________ charge also attracted to another electronegative atom
 - Attraction between charged portions of polar molecules
 - Opposites attract
 - ___________ bonds
 - Important in properties of ___________

Van der Waals Interactions

- Electrons in motion sometimes asymmetrically distributed
- Changing ___________ - ___________ of ___________
- Allow molecules and atoms to stick together
- Very weak
 - Fall apart really fast

Single bonds

- Hydrogen
 - One valence electron
 - Structural formula (bonding shown)

 - Molecular formula (no bonding shown)

Double bonds

- Oxygen
 - Six valence electrons
 - Structural formula (bonding shown) _____________
 - Molecular formula (no bonding shown) ___________

Formulas

- ___________ formula
 - Atoms ___________ bonds represented
 - e.g. Water: H—O—H
- ___________ formula
 - ___________ shown (no bonding shown) H₂O