Dynamics of Prokaryotic Growth
Chapter 4

Prokaryotic Growth Conditions

- Wide range
 - From deep oceans to volcanoes
 - From polar regions to equator
 - From Great Salt Lake to fresh-water streams
- Each species different
 - May grow at boiling point, but not below
 - May grow in Great Salt Lake, but not fresh-water streams

Pure Cultures

- _____ pure cultures in nature
 - ____________ species in communities
- Why do we want pure cultures in lab?
 - ____________ ____________ of particular species
 - Helps us determine ____________ ____________ of disease

Pure Cultures

- Population of organisms descended from a ____________ ____________
 - Separated from other species
- ___ 1% of all prokaryotes can be cultured in lab
 - Includes most medically important species
- Special techniques to achieve culture success
 - Sterility
 - Glassware, media, instruments
 - Aseptic techniques
 - Minimize contamination

Growing Bacteria on Solid Media

- Bacteria form ____________ on solid medium
- Colony
 - Mass of cells all ____________ from original cell
 - Cannot see with naked eye until about a million _______ cells present
Chapter 4 Dynamics of Prokaryotic Growth

Growing Cultures

- Liquid (__________)
 - Contains ideal nutrients for growth
 - _______ isolate pure cultures in _________
- Solid
 - Liquid with ________, a gelling agent
- Agar
 - Complex polysaccharide derived from marine _________
 - Add more to make media more solid
- Containers
 - Petri dish (“___________”)
 - ________ (“deeps”; “slants”)

Characteristics of Agar

- ________ to bacterial degradation
- Survives ________ temperature treatment
 - Can be sterilized in autoclave
- ________ at ________ temperatures
 - Can be poured into convenient containers
- Stays liquid until below ______ °C
- After cooling, ________ ________ over wide temperature range
 - Until above 95°C
- ________
 - Allows colonies to be seen

Streak Plate Method for Isolating Pure Cultures

Stock Cultures of Pure Cultures

- ________ pure culture
- Take ________ of colony
- ________ onto agar medium in tube
 - “Agar ________”
- Why slants?
 - Larger surface area
 - Condensation?
- Maintain as inoculum for later study
Chapter 4 Dynamics of Prokaryotic Growth

Understanding Bacterial Growth

- Growth
 - Increase in number of ______________ in a population
- Binary fission
 - Cell increases in size
 - Doubles contents, including DNA
 - Divides in two
 - Growth is ______________
 - $1 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 16 \rightarrow 32 \rightarrow 64$

Generation Time

- ______________ time = ______________ time
- Depends on ______________ ______________
 - e.g. Temperature
 - e.g. Nutrient levels
- Depends on ______________
 - *Escherichia coli* – 20 minutes
 - *Mycobacterium tuberculosis* – 12-24 hours
- Exponential growth means pathogens can “explode” in numbers in short time
 - e.g. potato salad example in book:
 - 10 cells $\rightarrow \sim 40,000$ cells in 4 hours!

Exponential Growth Calculations

- $N_t = N_0 \times 2^n$
- N_t = number of cells in a population at some time of interest (“t”)
- N_0 = original number of cells in the population (at time “0”)
- n = number of generations in the time elapsed
- Potato salad example
 - $N_0 = 10$ cells
 - $t = 4$ hours
 - Generation time = 20 minutes (3 generations per hour)
 - $n = (3 \times 4) = 12$
 - $N_t = 10 \times 2^{12} = 40,960$
Chapter 4 Dynamics of Prokaryotic Growth

Factors Affecting Microbial Growth
- Temperature
- Oxygen
- pH
- Water availability

Environmental Factors Affecting Microbial Growth
- Range: ~25°C between upper and lower limits
- Optimum somewhere in range
 - reactions temperature specific
 - Speed of reaction increases for each ______ °C
 - Can be ________ if temperature gets too high
 - Some have proteins with _______ - _______ 2° & 3° bonds
- Optimum temperature may be used as classification method

Classification Based on Temperature Optima
- (-5°C – +15°C)
 - e.g. Listeria (food poisoning)
 - Prefer > 15°C, but tolerate lower
 - e.g. Pseudomonas spp.
- (25°C – 45°C)
 - e.g. Escherichia coli
 - Most other common bacteria
- (45°C – 70°C)
 - Lactobacillus delbrueckii ssp. bulgaricus (yogurt)
- (70°C – 110°C)
 - Members of Archaea
 - Pyrolobus fumarimii isolated from hydrothermal vent has max growth temp of 113°C

Growth Rates at Various Temperatures
- Why do some prokaryotes tolerate high temperature?
- Enzymes (proteins) from thermophiles and hyperthermophiles do _______ denature with heat
 - Denaturation is function of sequence of amino acids
 - Sequence determines bonds in three-dimensional structure
Chapter 4 Dynamics of Prokaryotic Growth

Importance of Temperature

- Food ________________
- Spoilage organisms usually retarded by cold
 - Refrigeration is ~ ____ °C
 - Psychrophiles and ________________ can still grow
- Increased temperatures often mean food poisoning organisms can grow

Temperature effects on disease ________________

- Some parts of body are lower in temperature
 - ________________ – feet, hands, nose, ears, fingers
- Some organisms can only grow in cooler regions of body
 - *Mycobacterium leprae* (leprosy) grows better in extremities
 - Syphilis lesions on genitalia, lips, tongue, throat
 - ________________ were induced to treat syphilis using malaria before antibiotics

Oxygen

- Different species ________________ to different levels of oxygen
- Ecological ________________
 - ________________ O₂
 - e.g. surface of skin
 - ________________ or ________________ O₂
 - e.g. soil, water, parts of body
 - ________________ Low or ____ O₂
 - e.g. intestines, stomach, swamps
- Some organisms killed or inhibited by O₂

 ________________ Derivatives of O₂

- Produced during normal metabolism or as reaction with light
 - ________________ (O₂⁻)
 - Hydrogen ________________ (H₂O₂)
- Survival in O₂ requires special enzymes to detoxify
 - ________________ ________________ (SOD)
 - O₂⁻ → H₂O₂
 - ________________
 - H₂O₂ → H₂O + O₂
Chapter 4 Dynamics of Prokaryotic Growth

Determining O_2 Requirements

- Grow unknown in “_____________ tube”
- _______________ tube of nutrient agar
 - _______________ _______________ O_2 & _______________ agar
- _______________ to 50°C
- Add organism
 - _______________ or swirl
- Cool and incubate at appropriate temperature
- O_2 in medium _______________ by solidified agar
- Organism grows at _______________ O_2 level

Classification by Oxygen Requirements

- Obligate aerobes
- Facultative anaerobes
- Obligate anaerobes
- Microaerophiles
- Aerotolerant anaerobes

Classification by Oxygen Requirements

- _______________ aerobes
 - _______________ O_2 for aerobic respiration
 - Cannot grow/multiply without O_2
 - e.g. *Pseudomonas spp.*
- Obligate _______________
 - _______________ reproduce in presence of O_2
 - Pervasive in environment
 - ½ of all cytoplasm on earth!!!!
- No adaptation to toxic derivatives
 - e.g. *Bacteroides spp.* – large intestine
 - e.g. *Clostridium spp.* – soil organisms
 - C. botulinum – botulism toxin
Chapter 4 Dynamics of Prokaryotic Growth

Classification by Oxygen Requirements

- _______________ anaerobes
 - Grow _______________ in _______________ of O₂, but can grow without
 - Use _______________ respiration if O₂ available
 - More ATP → faster growth
 - _______________ or _______________ respiration if unavailable
 - e.g. *Escherichia coli*
 - e.g. *Saccharomyces cerevisiae* (yeast – eukaryote)

Classification by Oxygen Requirements

- _______________
 - Require _______________ amounts of O₂
 - Over 2-10% O₂ inhibitory
 - e.g. *Spirillum volutans* aquatic environments
 - e.g. *Helicobacter pylori* – gastrointestinal ulcers
 - _______________ anaerobes
 - _______________ to level of O₂
 - Grow in presence of O₂ but do _______ respire aerobically
 - “_____________ fermenters”
 - e.g. *Lactobacillus bulgaricus* – cheese and yogurt
 - e.g. *Streptococcus pyogenes* – “strep throat”

Environmental Factors Affecting Microbial Growth – pH

- Most can live between pH ______ and pH ______
- May have adaptations to maintain internal neutrality
 - Even though externally extreme
- _______________
 - Optimum of pH 7 – most bacteria
 - May have adaptations to neutralize local environments
 - e.g. *Helicobacter pylori* makes urease
 - Splits urea in stomach → CO₂ + ammonia → neutralizes local area
- _______________
 - Optimum of < pH 5.5
 - e.g. *Thiobacillus ferroxidans* – best at pH 2.0
 - Oxidizes sulfur for energy → sulfuric acid as by-product
Chapter 4 Dynamics of Prokaryotic Growth

- Pumps out excess protons to keep internal pH neutral

- Optimum of > pH 8.5
- e.g. *Bacillus alcalophilus* – best at pH 10.5
- Antiporter exchanges ions to maintain internal neutrality

Environmental Factors Affecting Growth – Water Availability

- availability affected by substances
 - e.g. NaCl or sugars water availability
 - If solute concentration in environment higher than in cell → water cell
 - Cell dehydrates
 - Membrane
 - “” if able to tolerate up to 10% NaCl
 - e.g. *Staphylococcus spp.* on skin
 - “” if able to tolerate even higher NaCl concentrations
 - What happens if solute concentration outside is lower than inside cell?

Adjusting to Excess Osmolarity in Environment

- Pump ions out of cell to maintain internal osmolarity e.g. K⁺
- Produce small amino acids, to equalize osmolarity e.g. proline

Importance of Osmolarity and Water Availability

- Reduced → reduced
 - In most cases
 - dissolved salts or sugars to environment → bacterial growth
 - Food preservation
 - Examples of foods preserved using salt?
 - Examples of foods preserved using sugar?

Nutritional Factors Affecting Microbial Growth

- All cell products made from building blocks
 - Lipids
 - Carbohydrates
 - Amino Acids / Proteins
 - Nucleic Acids
- These compounds all formed from
 - Carbon
 - Hydrogen
 - Oxygen
 - Nitrogen
 - Prokaryotes only use N₂
Chapter 4 Dynamics of Prokaryotic Growth

Minor Elements, Trace Elements

- ____________ Elements
 - Needed in smaller quantities than major elements
 - Sulfur
 - Phosphorus
 - Calcium
 - Magnesium
 - Potassium
 - Iron

- ____________ Elements
 - Needed in very small quantities
 - Cobalt
 - Zinc
 - Copper
 - Molybdenum
 - Manganese

___________ Factors

- Low molecular weight compounds
 - ____________
 - ____________
 - ____________
 - ____________

“___________organisms” need ____________ growth factors supplemented

- e.g. Neisseria
- e.g. Lactobacillus spp.
 - Used for bioassays of vitamin levels
- May require unusual compounds
 - e.g. naphthalene (mothballs)!!
 - e.g. herbicides
 - e.g. plastics
 - e.g. Bacillus fastidiosus
 - Can use only urea and derivatives for both carbon and energy

Diversity in Energy Source and Carbon Source

- ____________
 - Phototrophs vs chemotrophs
- ____________
 - Autotrophs vs heterotrophs
Chapter 4 Dynamics of Prokaryotic Growth

The Autotrophs

- ________________ – “Primary Producers”
 - Use ___________ for energy
 - Use ___________ in atmosphere for carbon source to make organic molecules
 - Many other organisms rely on these in atmosphere
 - e.g. Cyanobacteria
 - e.g. Algae

- ________________ (“chemoautotrophs”)
 - Use ___________ compounds for energy (e.g. H₂S)
 - Use ___________ for carbon source
 - May live in inhospitable environments
 - e.g. hot sulfur springs
 - Primary producers for their environments

The Heterotrophs

- ________________
 - Use ___________ for energy
 - Carbon from ________________ carbon compounds
 - e.g. purple nonsulfur bacteria
 - Grow anaerobically using light for energy
 - Grow aerobically in dark, using organic sources of energy

- ________________
 - Use ___________ sources of ___________ and ___________
 - Most common among those associated with humans & animals
 - Beneficial and pathogenic groups
 - Varies how fastidious species are

Bacterial Growth Under Laboratory Conditions

- Open systems
 - Nutrients added, waste removed
 - ___________ growth
- Closed systems different from open systems
 - Tubes of broth
 - Plates of agar

- Nutrients are ___________
 - May run out
 - ___________ for resources occurs
 - Results in characteristic growth stages: Growth Curve
Dynamics of Prokaryotic Growth
Chapter 4

Growth Curves

- Four distinct stages
 - Lag phase
 - Exponential (Log) phase
 - Stationery phase
 - Death phase

__________________________ Phase
- ________________ for cell division – ______ cell division
 - Synthesis of macromolecules
- Length of phase depends on conditions
 - Richness of medium
 - Stored in refrigerator then suddenly transferred
 - Age of cells

__________________________, or Exponential Phase
- ________________ growth
 - ________________ cell division
 - Generation time ________________ here
 - More ________________ to antibiotics and other chemicals
- ________________ log phase
 - ________________
 - ________________
 - Growth materials or waste materials
- ________________ log phase
 - ________________ metabolites produced

__________________________ Phase
- Resources ________________ or ________________ accumulated
- Total number viable cells remains relatively ________________
- Death = cell division
- ________________ stationary phase
 - ________________ metabolites may still be produced – see below
- Cells more resistant to antibiotics, chemicals, and radiation
Chapter 4 Dynamics of Prokaryotic Growth

__________ Phase

- __________ death
- Death of cells __________ cell division
- Cells die at __________ rate
- Usually not as steep a slope as the growth phase

Colony Growth

- Growth in colonies follows growth curve
- Different parts of colony at __________ __________ of growth curve
- Resources depleted sooner in __________ of colony
 - __________ between cells in colony restricts growth
 - __________ metabolites accumulate more quickly in center of colony
- Exponential growth continues at __________
- Plane of division or enzyme production at colony edges may produce intricate patterns

Intricate Patterns of Growth by Some Colonies

- Patterns may vary from species to species
- Colony morphology may change when same species is grown on different media

Bacterial Growth in Nature

- __________ in pure culture
- Nutrients may be replenished
- Cells may be __________ by other organisms or swept away by currents
- Sometimes develop strategies to adhere to surfaces or to interact with other species

__________ Microbial __________

- In nature, species live in close association with other species
 - e.g. mouth, intestines, soil, water
- Interactions between species optimize __________ for other species
 - e.g. aerobes use up O\textsubscript{2}, reducing O\textsubscript{2} levels for anaerobes
 - e.g. metabolic wastes may provide nutrients for another species
- Difficult to reproduce in laboratory
 - May be hard to grow these species
Chapter 4 Dynamics of Prokaryotic Growth

Biofilms

- Bacteria attached to surfaces encased in polysaccharide (___________)
 - Slippery rocks in streams
 - Slime in kitchen drain
 - Scum in toilet bowls
- Plaque on teeth
- Slime on cooling towers
- Can you think of others???

___________ Formation

- Bacterium ____________ to surface
- Produces loose ____________
- Other ____________ may attach to glycocalyx and grow
- Cells in characteristic architecture with open channels for nutrients and waste
- ____________ - ____________ communication important in structure

Biofilms in Medicine and Environment

- Serious problem in
 - ____________ to antibiotics or other chemicals
 - ____________ decay
 - ____________ disease
 - Other bacterial infections
- May be beneficial in
 - ____________
 - Improves ability of bacteria to degrade chemicals such as oil or pesticides

Methods of ____________ and ____________ Bacterial Growth

- Direct Cell Counts
 - Counts ______ cells – alive or dead
- Viable Cell Counts
 - Counts only those able to ____________
 - Good for monitoring growth in food or water
- Measuring ____________
 - Measures turbidity, total weight, or nitrogen
- Measuring Cell ____________
 - Measure by-products of metabolism
Chapter 4 Dynamics of Prokaryotic Growth

Methods of Detecting and Measuring – Direct Cell Counts

- _______________ microscopic counts – rapid
 - Counting chambers on special slides
 - Hold measured volume of liquid
 - Grid facilitates counts
 - Must be ≥ _____ cells/ml for accuracy

Methods of Detecting and Measuring – Direct Cell Counts

- Cell counting instruments
 - _______________ Counter
 - Cells in suspension of saline
 - Measures changes in resistance past aperture
 - Cells less conducting
 - _______________ _______________
 - Measures change in laser light scatter past aperture
 - May tag some cells with fluorescent dye to differentiate types

Methods of Detecting and Measuring – _______________ Cell Counts

- Quantifies number capable of multiplying

Two approaches:

- Actual counts of colony-forming units (______________)
 - Plate counts
 - Membrane filtration

- Statistical _______________
 - Most probable number (MPN)

Methods of Detecting and Measuring – Viable Cell Counts

- Actual counts – ________________ counts
 - Isolated cell on agar plate grows to single colony
 - Dilute culture to find countable dilution
 - Use dilutions at 10-fold concentration differences
 - Count only plates with 30 – 300 colonies
 - One colony = one ________________ cell in original sample
 - Colony-forming unit (______________)

4 - 14
Chapter 4 Dynamics of Prokaryotic Growth

Methods of Detecting and Measuring – Viable Cell Counts

- Plate counts
 - ____________-plate method
 - 0.1 – 1.0 ml dilution into empty sterile Petri dish
 - Add melted nutrient agar cooled to 50°C
 - Cells trapped and grow in cooled agar
 - ____________-plate method
 - 0.1 – 0.2 ml dilution onto surface of solid nutrient agar
 - Spread with glass spreader

Methods of Detecting and Measuring – Viable Cell Counts

- Actual counts – ____________ ____________
 - Pass sample through fine-pore filter (sterile)
 - Known volume
 - Trap organisms on filter
 - ____________ filter to agar plate for growth
 - Count CFUs
 - Number of CFUs = cells/volume

Methods of Detecting and Measuring – Viable Cell Counts

- Statistical ____________
 - ____________ ____________ (MPN)
 - Serial dilutions in 10-fold increments
 - Replicated tubes of broth for each dilution
 - Incubate and assess growth
 - e.g. gas production
 - Compare with MPN table for estimate of cell numbers
 - Commonly used to determine coliforms in water samples
 - Gram-negative rods
 - Lactose-fermenters
 - Indicate fecal contamination

Methods of Detecting and Measuring – Viable Cell Counts

- MPN statistical method
Chapter 4 Dynamics of Prokaryotic Growth

Methods of Detecting and Measuring – Biomass

- __________
 - Cloudiness due to light scatter among cells in liquid
 - Requires high cell concentration to detect by eye
 - 10^6 still clear
 - 10^7 barely cloudy
 - Measure using ______________
 - Measures transmittance of light to detector
 - Inverse of optical density

Methods of Detecting and Measuring – Biomass

- Total __________
 - Good for filamentous organisms
 - Hard to count individual cells
 - Centrifuge for wet weight
 - Proportional to total number of cells
 - Dry at 100°C for 8-12 hrs
 - Dry weight = ~30% wet weight
 - Cell is approximately 70% water

Methods of Detecting and Measuring – Cell Products

- By-___________ of metabolism
 - ___________ production from breakdown of sugars
 - Use pH indicator in media
 - Color change indicates acid
 - ___________ production
 - Durham tubes trap gas bubbles in broth
 - Indicates fermentation w/ CO₂ production
 - ___________ production
 - Assessed using luciferase
 - Firefly enzyme
 - Light produced if viable organisms make ATP

Methods of Detecting and Measuring – Cell Products

- Gas trapped in Durham tubes