The Slope of a Line

Slope means the steepness of something like a roof or ski slope. Think of slope as the extent to which a line slants.

Slope is the ratio of vertical change (rise) to horizontal change (run).

Slope is the ratio of the change in y’s to the change in x’s.

The letter \(m \) is used to denote slope.

The formula for the slope of a line through points \(x_1, y_1 \) and \(x_2, y_2 \) is

\[
m = \frac{\text{rise}}{\text{run}} = \frac{\text{change in } y}{\text{change in } x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{y_1 - y_2}{x_1 - x_2} \quad \text{where } x_1 \neq x_2
\]

Example 1: Find the slope of a line through the points \(-6, 9 \) and \(3, -3 \).
Example 2: Graph the line $3x - 4y = 12$ by graphing the intercepts. Find the slope of the line just by using the graph. Then find the slope using two points on the graph and following the slope formula.
Example 3: Graph $y + 3 = 0$. Using two points on the graph, find the slope of the line.

Example 4: Graph $x = 1$. Using the two points on the graph, find the slope of the line.
Example 5: Find the slope of $4x - y = 4$ using the slope formula. Use the intercepts as points.

Now solve the equation $4x - y = 4$ for y.

You should have $y = 4x - 4$. Notice the coefficient of x is the slope of the line. Remember $y = mx + b$ from introductory algebra.
Example 6: Graph a line through the point $-3, -2$ with a slope of $\frac{1}{2}$.
Example 7: Graph a line through the point \(1, -3\) where \(m = -\frac{3}{4}\).

Notice: a line with positive slope slants upward from left to right and a line with negative slope slants downward from left to right.

From geometry we can prove the slopes of non-vertical parallel lines are equal. We can also show the slopes of perpendicular lines are negative reciprocals of each other. In other words their product is -1.
Example 8: Determine if the lines with equations $3x + 5y = 6$ and $5x - 3y = 2$ are parallel, perpendicular or neither.

(Hint: find the slopes of each line, you can 1) use x and y intercepts for the points and use the slope formula or you can 2) rewrite your equation in $y = mx+b$ form and find the slope as the coefficient of the x)
Example 9: In the fall of 2006, 21.4% of ARCC students smoked. In the fall of 2008, 30.5% of ARCC students smoked. Find the average rate of change in percent per year. Let x represent the year and y represent the percent.